Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Naphtha Fuel on a Light Duty Single Cylinder Compression Ignition Engine with Two Different Compression Ratios

2016-10-17
2016-01-2302
Gasoline-like fuels have been recently identified as good candidates to reduce NOX and particulate emissions when used in compression-ignition (CI) engines. In this context, straight-run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, was identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content (LHV) compared to diesel, CO2 benefits are also expected when using naphtha in such engines. In a previous study, wide ranges of Cetane Number naphtha fuels (CN 20 to 35) were evaluated to optimize CI combustion, with different bowls and nozzle designs. CN 35 naphtha fuel has been selected for its better robustness and lower HC and CO emissions. The purpose of the current study is to investigate the potential of CN 35 naphtha fuel on a light duty single-cylinder compression-ignition engine as well as the minimum required hardware modifications needed to properly run this fuel.
Technical Paper

Combustion Optimization of a Multi-Cylinder CI Engine Running with a Low RON Gasoline Fuel Considering Different Air Loop and After-Treatment Configurations

2017-10-08
2017-01-2264
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low research octane number (RON) gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different cetane number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine.
Technical Paper

Low RON Gasoline Calibration on a Multi-Cylinder Compression Ignition Engine to Fulfill the Euro 6d Regulation

2017-09-04
2017-24-0091
Reducing the CO2 footprint, limiting the pollutant emissions and rebalancing the ongoing shift demand toward middle-distillate fuels are major concerns for vehicle manufacturers and oil refiners. In this context, gasoline-like fuels have been recently identified as good candidates. Straight run naphtha, a refinery stream derived from the atmospheric crude oil distillation process, allows for a reduction of both NOx and particulate emissions when used in compression-ignition engines. CO2 benefits are also expected thanks to naphtha’s higher H/C ratio and energy content compared to diesel. In previous studies, wide ranges of Cetane Number (CN) naphtha fuels have been evaluated and CN 35 naphtha fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern, nozzle design and air-path technology, have been performed on a light-duty single cylinder compression-ignition engine.
X