Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Acoustic Enclosure Optimization for a Higher Capacity Diesel Generator Set Using Statistical Energy Analysis (SEA) Based Approach

2017-01-10
2017-26-0188
Diesel powered electric generators are used in a variety of applications, such as emergency back-up power, temporary primary power at industrial facilities, etc. As regulatory and customer requirements demand quieter designs, special attention is given to the design of acoustic enclosures to balance the need of noise control with other performance criteria like ventilation and physical protection. In the present work, Statistical Energy Analysis (SEA) approach augmented by experimental inputs is used to carry out Vibro-acoustic analysis of an enclosure for higher capacity Diesel generator set. The exterior sound radiated from an enclosed generator is predicted and further enclosure is optimized for an improved sound-suppression. The airborne sources such as engine, alternator, radiator fan and exhaust are modelled explicitly using experimental noise source characterization. Structure borne inputs are also captured in the test for improving modelling accuracy.
Technical Paper

Design of Super Silent Enclosure for Diesel Genset Using Statistical Energy Analysis (SEA) Technique

2019-01-09
2019-26-0185
Diesel engine generators are commonly used as a power source for various industrial and residential applications. While designing diesel generator (DG) enclosures requirements of noise control, ventilation and physical protection needs to be addressed. Indian legislation requirement demands DG enclosure insertion loss (IL) to be minimum 25 dB. However for certain critical applications like hospitals, residential apartments customer demands quiet DG sets than the statutory limits. IL targets for such application ranges between 35-40 dB. The objective of this paper is to develop methodology to design ‘Super Silent’ enclosure with IL of 35 dB by Statistical Energy Analysis (SEA) approach for small capacity DG set. Major challenge was to achieve IL of 35 dB with single enclosure and making use of SEA technique for small size enclosure wherein modal densities is very less. Major airborne noise sources like engine, radiator fan and exhaust were modelled by capturing noise source test data.
X