Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

CFD Topology and Shape Optimization for Port Development of Integrated Exhaust Manifolds

2017-03-28
2017-01-1339
Modern cylinder-head designs for gasoline engines are guiding the exhaust gas to the turbocharger system via an integrated exhaust manifold (IEM) which has several advantages like weight and cost reduction. On the other hand, the exhaust ports are running through a package labyrinth and are heavily bent within smallest space. Increased pressure drop, reduced mass flow rate, and deteriorated port flow efficiency could be the consequences leading to higher emissions, increased fuel consumption, and higher knock sensitivity. The optimization of the individual ports by computational fluid dynamics (CFD) is a proper means to minimize or even delete these drawbacks. Meanwhile, there are several powerful optimization methods for three-dimensional flows on the market. In this paper, a combined optimization strategy using CFD topology optimization followed by a shape optimization is presented.
Journal Article

CFD Simulation of Oil Jet Piston Cooling Applied to Pistons with Cooling Gallery

2022-03-29
2022-01-0210
Efficient cooling of pistons with oil jets can avoid engine failures due to exceeded piston temperatures of thermally high-loaded combustion engines and can contribute to fuel consumption savings. To reduce expensive and time-consuming engine testing during product development, computational fluid dynamics (CFD) simulations help to quantify the piston cooling performance and provide detailed insights into the complex interactions between oil, air, and piston already in the design phase. The durability of new piston design approaches, such as integrated advanced cooling galleries or highly resistant materials like steel, can be evaluated including the use of alternative fuels, such as compressed natural gas (CNG), hydrogen, alcohols, or e-fuels. A new CFD simulation methodology for oil-jet piston cooling has been developed to investigate the cooling efficiency considering various piston cooling geometries and operational parameters.
X