Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Novel Approach for the Impingement of AdBlue-Droplets based on Smooth Regime Transitions

2020-09-15
2020-01-2179
Further development of exhaust aftertreatment systems based on selective catalytic reduction (SCR) requires detailed knowledge of all involved physical and chemical processes. One major influence is the impingement of the injected urea water solution (UWS) droplets on the hot walls of the exhaust system. Due to the numerous influencing factors of this complex phenomenon, it is described by empirical impingement maps based on experimental investigations. Frequently, the impacting droplet is assigned to a single impingement regime (e.g. splash) according to surface temperature and a kinetic parameter (e.g. Bai-Gosman, Bai-ONERA, Kuhnke). A transitional range between regimes has been reported experimentally before, but was abandoned in most cases for model simplification reasons. Only rarely a smooth transition for a selected regime boundary was implemented.
Technical Paper

Modeling Approach for a Wiremesh Substrate in CFD Simulation

2017-03-28
2017-01-0971
Experimental studies have shown that knitted wiremesh mixers reduce the formation of solid deposits and improve ammonia homogenization in automotive SCR systems. However, their implementation in CFD models remains a major challenge due to the complex WM geometry. It was the aim of the current study to investigate droplet WM interaction. Essential processes, such as secondary droplet generation, wall film formation, and heat exchange, were analyzed in detail and a numerical model was set up. A box with heat resisting glass was used to study urea-water solution spray impingement on a WM under a wide range of operating conditions. High speed videography was used to identify the impingement regimes. Infrared thermography was applied to investigate WM cooling. In order to determine the impact of the WM on the spray characteristics, the droplet spectrum was measured both upstream and downstream of the WM using the laser diffraction method.
X