Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Journal Article

Multi-Plane PIV Measurements in a Gasoline Direct Injection Engine

2020-09-15
2020-01-2049
The flows in-cylinder have a profound effect on the mixture preparation and subsequent combustion in all engines. These flows are highly three-dimensional in nature and information from multiple planes is required to characterise the flow dynamics. The flow measurements reported here are from three orthogonal planes in an optical access engine that is based on the Jaguar Land Rover AJ200 Gasoline Direct Injection (GDI) engine. Particle Image Velocimetry (PIV) measurements have been taken every 5°CA from the start of induction to the end of compression. Data have been obtained from 300 cycles for separate experiments measuring flows in the tumble plane, the swirl plane and the cross-tumble plane. Vector comparison metrics are used to quantitatively compare ensemble averaged PIV flow fields to Computational Fluid Dynamics (CFD) simulations across each plane in terms of both the velocity magnitude and direction.
Technical Paper

Effect of Ambient Pressure on Ammonia Sprays Using a Single Hole Injector

2024-04-09
2024-01-2618
Ammonia has received attention as an alternative hydrogen carrier and a potential fuel for thermal propulsion systems with a lower carbon footprint. One strategy for high power density in ammonia applications will be direct injection of liquid ammonia. Understanding the evaporation and mixing processes associated with this is important for model development. Additionally, as a prior step for developing new injectors, it is of interest to understand how a conventional gasoline direct injection (GDI) injector would behave when used for liquid ammonia without any modifications. Pure anhydrous ammonia, in its liquid form, was injected from a single hole GDI injector at a fuel pressure of 150 bar into an optically accessible constant volume chamber filled with nitrogen gas for ammonia spray measurements. The chamber conditions spanned a wide range of pressures from 3 − 15 bar at an increment of 1 bar or 2 bar between the test points.
X