Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Bi-Directional Equalization System for Li-Ion Battery Pack Based on Fly-back Transformer

2018-04-03
2018-01-0442
For balancing Li-ion battery cells connected in series and effectively improving the consistency of the cells, a bi-directional equalization system based on fly-back transformer is proposed. Unlike the passive equalization technology using a resistor or active equalization with expensive DC-DC converter for the balancing among the cells, this equalization circuit consists of the fly-back transformer and RCD circuit, which can easily and cheaply realize the energy transfer between the whole battery module and the cells, and thus achieving bidirectional equalization. In this system, both the primary side and the secondary side of multi-winding transformer are connected to a MOSFET. All MOSFETs are controlled by the PWM signal. The control timing and duty ratio of the PWM control signal are determined through the simulation analysis. Meanwhile, an RCD circuit is applied at the primary side of multi-winding transformer for buffering the peak voltage caused by leakage inductance.
Technical Paper

SOC Estimation of Battery Pack Considering Cell Inconsistency

2019-04-02
2019-01-1309
Range anxiety problem has always been one of the biggest concern of consumers for pure electric vehicles. Accurate driving range prediction is based on accurate lithium-ion battery pack SOC (State of Charge) estimation. In this article, a complete SOC estimation algorithm is proposed from cell level to battery pack level. To begin with, the equivalent circuit model (ECM) is applied as the model of battery cell. ECM parameters are identified every 10% SOC interval through genetic algorithm. The dual extended Kalman filtering (DEKF) algorithm is adopted for cell-level SOC and ohmic resistance R0 estimation. The estimation accuracy of cell SOC and R0 is verified under NEDC dynamic working condition. The cell-level SOC estimation error is below 1%. However, cell inconsistency can always result in inaccurate cell SOC estimation inside the battery pack. The impact of initial SOC inconsistency and internal resistance inconsistency between cells on battery pack SOC is specifically analyzed.
X