Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimization of Vehicle Driveline Vibrations Using Genetic Algorithm (GA)

2001-04-30
2001-01-1511
Low frequency longitudinal vibrations resulting from driver throttle inputs are a common problem in modern passenger cars. This phenomenon, which is commonly referred to as shuffle or shunt, is due to sudden changes in the engine torque exciting torsional oscillations in the driveline. This paper presents a dynamic model of a vehicle driveline for the optimization of low frequency torsional vibration. The model used is first validated against experimental tests. Parameter sensitivity studies have been carried out using the model to identify the important components affecting shuffle. Three key parameters have been chosen from the parameter study. To optimize these key factors, Genetic Algorithms (GAs) have been used in this multi-parameter optimization problem. The results obtained from GAs have been compared with the calculus based optimization techniques.
Technical Paper

A Full Vehicle Engine Test Cell Model for Simulation Based Development

2011-04-12
2011-01-0525
Due to the increasing complexity of modern systems, demands for a reduced time to market, lower costs and more rapid product evolution use is made of simulation methods in engineering development. An executable dynamic simulation model may be used to define a complex system from which engineers can observe system behavior and make decisions based on better quality information thus coordinating development efforts more effectively. This work presents two models, both real time capable; a test cell model and a vehicle and driver model with a well defined architecture that helps facilitate Simulation Based Development (SBD) efforts relating to powertrain and drivetrain development. The models are created with a well defined architecture (Flexible Architecture for Simulation Based Development) and run (simulated) through the NEDC and US06 drive cycles.
X