Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Driving Posture Evaluation through Electroencephalographic Measurement and Digital Human Modeling

2017-03-28
2017-01-1394
Drivers’ physical and physiological states change with prolonged driving. Driving for extended periods of time can lead to an increased risk of low back pain and other musculoskeletal disorders, caused by the discomfort of the seats. Static and dynamic are the two main categories must be considered within the seating development. The posture and orientation of the occupant are the important factors on static comfort. Driving posture measurement is essential for the evaluation of a driver workspace and improved seat comfort design. This study evaluated the comfortable driving posture through physiological and ergonomics measurements of an automotive premium driver seat. The physiological evaluation includes electroencephalographic (EEG) for brain waves, Biopac’s AcqKnowledge program, and subjective measurements on 32 healthy individuals. JACK simulation was used for the ergonomics evaluation, i.e., the magnitude of the spinal loads about lumbar vertebrae was estimated.
Technical Paper

A Study of the Effect of Air-Mat Seat Pressure Level on Seating Comfort

2017-03-28
2017-01-1395
Seat cushions are considered as one of the important factors influence the seating comfort. In the automotive seat cushions, flexible polyurethane foams have been widely used due to the cushioning performance. Automotive seat designers are paying more attention to the improvement of seat cushion properties. This study introduces an automotive seat that uses an air-mat in the seat cushion along with polyurethane foam. The air-mat can be adjusted with its internal air pressure. The objective of this paper is to examine air-mat seat pressure level on seating comfort. Vibration experiments have been performed on the BSR simulator with random vibration. Tri-axial accelerometers were used to measure vibration at the foot and hip. All measured vibration were about the vertical direction (z-axis). The whole-body vibration exposure parameters (weighted root-mean-square (RMS), vibration dose value (VDV), transmissibility (SEAT value)) were calculated per ISO 2631-1 standard.
X