Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Development of Spindle Drive Power Trunk Lid System with Optimizing Operation Noise

2022-03-29
2022-01-0759
The power trunk lid system is a device that automatically opens and closes the trunk lid by motor, for the purpose to improve user’s convenience. This technology was applied only to high-end large cars such as Equus and Genesis. But as preference for high convenience features increases, the scope of application is gradually expanding to semi-large and mid-sized cars. Therefore, the necessity of securing profitability through cost reduction was emerged, and it made us to develop the power trunk lid system by spindle drives. Compared to the conventional swing arm drive type, the spindle drive type may achieve cost savings, lightness and easy of assembly by optimizing the required motor specifications. However, since it uses a planetary gear with high gear ratio and the high rotation speed of the motor, operating noise is relatively large.
Technical Paper

A Research on Kinematic Optimization of Auto Flush Door Handle System

2020-04-14
2020-01-0623
Today, many car manufacturers and their suppliers are very interested in power-operated door handles, known as auto flush door handles. These handles have a distinguishing feature in terms of the way they operate. They are hidden in door skins and deployed automatically when users need to open the door. It is obvious that it is a major exterior styling point that makes customers interested in the vehicles that apply it. To make this auto flush door handle, however, there lie difficulties. First, because there is no sufficient space inside a door, applying these handles can be a constraint in exterior design unless the structures of them are kinematic optimized. The insufficient space can also cause problems in appearance of the handles when they are deployed. The purpose of this study is to establish the kinematic system of auto flush door handle to overcome the exterior handicaps such as the excessive exposure of the internal area on the deployed position.
X