Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation Study on the Use of Argon Mixtures in the Pressurized Motored Engine for Friction Determination

2020-09-27
2020-24-0004
Mechanical friction and heat transfer in internal combustion engines are two highly researched topics, due to their importance on the mechanical and thermal efficiencies of the engine. Despite the research efforts that were done throughout the years on both these subjects, engine modeling is still somewhat limited by the use of sub-models which do not fully represent the phenomena happening in the engine. Developing new models require experimental data which is accurate, repeatable and which covers wide range of operation. In SAE 2018-01-0121, the conventional pressurized motored method was investigated and compared with other friction determination methods. The pressurized motored method proved to offer a good intermediate between the conventional motored tests, which offer good repeatability, and the fired tests which provide the real operating conditions, but lacks repeatability and accuracy.
Technical Paper

The Determination of Motored Engine Friction by Use of Pressurized ‘Shunt’ Pipe between Exhaust and Intake Manifolds

2018-04-03
2018-01-0121
Several methods are nowadays used by OEM’s in order to determine engine friction through experiments to help them develop friction correlations to be used in 1D simulation models. Some of the friction measurement methods used are; Willans Line, Morse test, Teardown test and Indicated Method. Each of these methods have their own disadvantages, with some reliant on heavy assumptions. In this paper a friction measurement method is discussed which requires a conventional motoring dynamometer cell by which the engine can be motored at different speeds. The exhaust manifold of the motored 2 litre, 4 cylinder diesel engine was shorted to the intake manifold with an unrestrictive ‘shunt’ pipe which reroutes the exhausted air to the intake [1]. The shunt pipe was pressurized by an external source of compressed air to make up for blow-by losses. It is noted that the compressed air supply is thus a small fraction of what would be required if no recirculation is used.
X