Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Experimental and Numerical Investigation of the Engine Operational Conditions’ Influences on a Small Un-Scavenged Pre-Chamber’s Behavior

2017-09-04
2017-24-0094
Despite significant benefits in terms of the ignition enhancement, the strength and timing of the turbulent flame jets subsequently issuing into the main chamber strongly depend on the pre-chamber combustion process and, thus, are sensitive to the specific engine operating conditions it experienced. This poses considerable difficulties in optimizing engine operating conditions as well as controlling engine performance. This paper investigates the influence of engine operating conditions on the pre-chamber combustion event using both experimental and numerical methods. A miniaturized piezo-electric pressure transducer was designed to be placed inside the engine cylinder head to record the pre-chamber inner volume pressure, in addition to conventional pressure indication inside the main chamber.
Technical Paper

A Zero Dimensional Turbulence and Heat Transfer Phenomenological Model for Pre-Chamber Gas Engines

2018-04-03
2018-01-1453
Most of the phenomena that occur during the high pressure cycle of a spark ignition engine are highly influenced by the gas temperature, turbulence intensity and turbulence length scale inside the cylinder. For a pre chamber gas engine, the small volume and the high surface-to-volume ratio of the pre chamber increases the relative significance of the gas-to-wall heat losses, the early flame kernel development and the wall induced quenching; all of these phenomena are associated up to a certain extent with the turbulence and temperature field inside the pre chamber. While three-dimensional (3D) computational fluid dynamics (CFD) simulations can capture complex phenomena inside the pre chamber with high accuracy, they have high computational cost. Quasi dimensional models, on the contrary, provide a computationally inexpensive alternative for simulating multiple operating conditions as well as different geometries.
X