Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

On the Wear Dependence of Low-Frequency and High-Frequency Brake Squeal

2018-10-05
2018-01-1902
The dynamics of disc brakes, and in particular their NVH behavior, have long been the focus of research. Measurements by Rhee et al. show that brake pad wear has a significant influence on the occurrence of low and high frequency squealing [1]. It is suspected that low frequency squealing is more likely to occur when the wear difference between the inner and outer brake pads is high. If the two pads incur comparable wear, however, the prevalence of high frequency squealing increases. In order to investigate this hypothesis, this paper focuses on a simplified model of a commercial brake system. First, the friction force between the inner pad and the disc is iteratively adjusted, while the force between the outer pad and the disc is held constant. In a second step, the inner pad’s wear is iteratively increased, while the wear on the outer pad remains unaffected.
Technical Paper

The Influence of Differential Pad Wear on Low-Frequency and High-Frequency Brake Squeal

2019-09-15
2019-01-2130
The NVH behavior of disc brakes in particular, is in the focus of research since a long time. Measurements at a chassis dynamometer show that brake pad wear has a significant influence on the occurrence of low- and high-frequency squealing [1]. It is suspected that high-frequency squealing is more likely to occur when the wear difference between the inner and outer brake pad is small. In the other case, if the differential wear rate between the inner and outer pads becomes higher, the prevalence of low-frequency squealing increases. In order to examine this hypothesis, this work focuses on a simplified model of a commercial brake system [2]. In a first step, the inner pad’s wear is iteratively increased, while the wear on the outer pad remains unaffected. In a second step, the coefficient of friction at the worn pad is iteratively increased to investigate the influence on the low and high-frequency squealing.
X