Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Testing of a Low Temperature Regenerating Catalytic DPF at the Exhaust of a Light-Duty Diesel Engine

2018-04-03
2018-01-0351
The wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to meet the particulate emission limits imposed by government regulations. Today’s technology shows the best balance between filtration efficiency and back-pressure in the engine exhaust pipe. Conventional filters consist in alternately plugged parallel square channels, so that the exhaust gases flow through the porous inner walls leading to particles trapping. During the accumulation phase the pressure drop across the filter increases, thus requiring periodic regeneration of the DPF through after and post fuel injection strategies. This paper deals with the experimental testing of a catalytic silicon carbide (SiC) wall flow DPFs with CuFe2O4 loading. The filter was built following an optimized procedure based on a preliminary controlled chemical erosion of the SiC porous structure.
Technical Paper

Development and Experimental Validation of a Control Oriented Model of a Catalytic DPF

2019-04-02
2019-01-0985
1 The wall-flow Diesel Particulate Filter (DPF) is currently the most common after-treatment system used to meet the particulate emissions regulations for automotive engines. Today’s technology shows the best balance between filtration efficiency and back-pressure in the engine exhaust pipe. During the accumulation phase the pressure drop across the filter increases, thus requiring periodic regeneration of the DPF through after and post fuel injection strategies. This paper deals with the development of a control oriented model of a catalytic silicon carbide (SiC) wall flow DPFs with CuFe2O4 loading for automotive Diesel engines. The model is intended to be used for the real-time management of the regeneration process, depending on back-pressure and thermal state.
X