Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Study of Sliding Wear Behavior of the Casted Lead Bronze Journal Bearing Material

2019-04-02
2019-01-0824
Lead (Pb) bronze material is used for the manufacturing of bearings. Lead provides less friction and wear-related properties to bronze. During working of the bearings the lead contained micro-chips mixes with the lubricant oil and makes its disposal difficult. Rotational speed and applied load are the two main parameters on which the working and amount of wear from the bearing depend. So it is important to find out an optimum set of speed and pressure on which a particular bearing should operate to minimize the wear and hence minimize the lead-contaminated lubricating oil. In the present work, Taguchi technique has been used to find out the optimum values of speed and pressure. To measure the specific wear rate (SWR) and coefficient of friction (COF) of the leaded bronze material, it is made to slide on a mild steel material and amount of wear and coefficient of friction has been recorded using a pin on disc machine using ASTM-G99 standards.
Technical Paper

Effect of Surface Coatings on the Tribological Properties of Sliding Contacts

2023-04-11
2023-01-0405
The present work discusses the effects of Electrolytically deposited chromium coating on the Tribological behaviour of piston ring material. The frictional behaviours were evaluated using the linear reciprocating Tribometer under varying conditions of load and temperature. Test temperatures of 25, 50, and 100 degrees Celsius and loads of 20, 30, and 40N were applied during the tests to obtain the wear response of the coating under conditions similar to real piston cylinder/ring friction conditions. Tests were carried out with a constant sliding speed of 0.1 m/s. Optical micrographs and scanning electron microscope were used to analyze the nature of wear. It has been found that for lubricated or non-lubricated and coated or uncoated specimens, on increasing load, wear and surface roughness both increased for pins and plates.
X