Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Morphological Characterisation of Diesel Soot in Oil and the Associated Extraction Dependence

2018-04-03
2018-01-0935
The size and morphology of soot particles and agglomerates extracted from lubricating oil drawn from the sump of a diesel engine have been investigated and compared using Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Samples were prepared for electron microscopy imaging by both centrifugation and solvent extraction to investigate the impact of these procedures on the morphological characteristics, such as skeleton length and width and circularity, of the obtained soot. It was shown that centrifugation increases the extent of agglomeration within the sample, with 15% of the agglomerates above 200 nm compared to only 11% in the solvent extracted soot. It was also observed that the width of centrifugation extracted soot was typically 10 nm to 20 nm larger than that of solvent extracted soot, suggesting that centrifugation forces the individual agglomerate chains together.
Technical Paper

Soot in the Lubricating Oil: An Overlooked Concern for the Gasoline Direct Injection Engine?

2019-04-02
2019-01-0301
Formation of soot is a known phenomenon for diesel engines, however, only recently emerged for gasoline engines with the introduction of direct injection systems. Soot-in-oil samples from a three-cylinder turbocharged gasoline direct injection (GDI) engine have been analysed. The samples were collected from the oil sump after periods of use in predominantly urban driving conditions with start-stop mode activated. Thermogravimetric analysis (TGA) was performed to measure the soot content in the drained oils. Soot deposition rates were similar to previously reported rates for diesel engines, i.e. 1 wt% per 15,000 km, thus indicating a similar importance. Morphology was assessed by transmission electron microscopy (TEM). Images showed fractal agglomerates comprising multiple primary particles with characteristic core-shell nanostructure. Furthermore, large amorphous structures were observed. Primary particle sizes ranged from 12 to 55 nm, with a mean diameter of 30 nm and mode at 31 nm.
X