Refine Your Search

Search Results

Viewing 1 to 6 of 6
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

LONG-TERM STORAGE RELIABILITY OF HIGH PRESSURE GAS CONTAINERS FOR PNEUMATIC ACTUATION SYSTEMS

1994-05-01
HISTORICAL
AIR4725
This SAE Aerospace Information Report (AIR) provides design data reliability information relative to the long-term storage of gas containers or pressure vessels charged with nitrogen or helium at pressures ranging from 6000 to 12 000 psi. The gas containers are cylindrical, spherical, or toroidal in shape. Internal volumes range up to 1385 in3. Applications for this type cold gas actuation system include tactical missiles, guided projectiles, and smart bombs. A typical system is described.
Standard

Long-Term Storage Reliability of High Pressure Gas Containers for Pneumatic Actuation Systems

2013-10-04
CURRENT
AIR4725A
This SAE Aerospace Information Report (AIR) provides design data reliability information relative to the long-term storage of gas containers or pressure vessels charged with nitrogen or helium at pressures ranging from 6000 to 12 000 psi. The gas containers are cylindrical, spherical, or toroidal in shape. Internal volumes range up to 1385 in3. Applications for this type cold gas actuation system include tactical missiles, guided projectiles, and smart bombs. A typical system is described.
Standard

Achieving Cleanliness Standards for Aircraft Hydraulic Systems During Manufacture

2014-05-12
HISTORICAL
ARP5891
This SAE Aerospace Recommended Practice (ARP) establishes the processes to achieve and maintain the required cleanliness levels in flight vehicle hydraulic systems during fabrication, assembly and pre-flight functional tests. This recommended practice covers exclusion and removal primarily of solid contaminants that occur or are created during these successive steps. The flushing procedure for installed tubing is detailed. This ARP does not address contamination levels of hydraulic fluids as purchased, operation and maintenance of ground carts, details of component cleanliness or of contamination measurement. This ARP applies to military aircraft and helicopters designed to AS5440, commercial aircraft hydraulic systems designed to ARP4752 and commercial helicopter hydraulic systems designed to ARP4925.
X