Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Heat Transfer Sensitivity Study for an Advanced Diesel Engine

2003-03-03
2003-01-0561
This paper uses CFD methodology to simulate a prototype Diesel engine operating at high peak pressures (HPP). Under these conditions the accurate estimation of the level of thermomechanical stress on metal components is crucial for the design process. CFD simulations have been performed of flow, combustion and heat transfer to provide detailed insight into the in-cylinder behaviour of the engine. Particular emphasis was put on improving wall heat transfer predictions which have been compared with detailed local time-resolved surface heat transfer measurements. It is demonstrated that heat transfer strongly depends on flame spread via flow field and spray-related processes. Hence local heat transfer measurements also provide a stringent testing ground for spray and combustion model performance. Additionally it is shown that widely-used empirical heat transfer correlations are incapable of estimating the critical level and nature of thermal loading.
Technical Paper

Rapid CFD Simulation of Internal Combustion Engines

1999-03-01
1999-01-1185
Multi-dimensional modelling of the flow and combustion promises to become a useful optimisation tool for IC engine design. Currently, the total simulation time for an engine cycle is measured in weeks to months, thus preventing the routine use of CFD in the design process. Here, we shall describe three tools aimed at reducing the simulation time to less than a week. The rapid template-based mesher produces the computational mesh within 1-2 days. The parallel flow solver STAR-CD performs the flow simulation on a similar time-scale. The package is completed with COVISEMP, a parallel post-processor which allows real-time interaction with the data.
X