Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Injuries to the Cervical Spine Caused by a Distributed Frontal Load to the Chest

1982-02-01
821155
Unembalmed cadavers were exposed to −Gx acceleration while restrained by applying a frontal load to the chest. A pre-deployed non-venting production air cushion mounted on a non-collapsible horizontal steering column provided the distributed load. The sled deceleration pulse was determined from a series of Part 572 dummy runs in which the HIC, chest acceleration and knee loads were at but not in excess of the limits specified in the current FMVSS 208. A total of six cadavers have been tested. In three of the runs, there were severe neck injuries of the type which have not been observed previously in belted tests. They include complete severance of the cord, complete avulsion of the odontoid process, atlanto-occipital separation with ring fracture. This study does not claim to establish the injury potential of air bags but uses the air bag to provide a uniform restraining load to the chest to investigate the mechanism of neck injuries.
Technical Paper

Full-Scale Experimental Simulation of Pedestrian-Vehicle Impacts

1976-02-01
760813
A series of 10 full-scale experimental simulations of pedestrian-vehicle impact was carried out using cadavers and a 95th percentile anthropomorphic dummy. The test subjects were impacted laterally and frontally at 24, 32 and 40 km/h (15, 20 and 24 mph). Each subject was extensively instrumented with miniature accelerometers, up to a maximum of 53 transducers. The nine-accelerometer scheme was used to measure angular acceleration of body segments from which it was possible to compute the head injury criterion (HIC) for cadaver head impact. A full-size Chevrolet was used as the impacting vehicle. The impact event was three-dimensional in nature during which the body segments executed complex motions. Dummy impacts were more repeatable than cadaver impacts but the response of these test subjects were quite different. The HIC was higher for head-hood impact than for head-ground impact in two of the cases analyzed.
X