Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modelling and Experiments of HCCI Engine Combustion with Charge Stratification and Internal EGR

2005-10-24
2005-01-3725
A high-swirl, low Compression Ratio (CR), optically accessed engine that was able to produce a stratified charge was used to investigate the differences in HCCI combustion and in the propagation of the autoignition front between a non-stratified and a stratified charge. Furthermore the relevance of charge stratifying an engine using variable injection timing with large temperature inhomogeneities was investigated. The CHEMKIN code and a detailed reaction mechanism were used to simulate the fuel chemistry of ignition and combustion in a low CR engine. The aim of the simulation was to quantify the effect of initial mixture temperature, Ti and A/F ratio on cool flame and main ignition timing and to evaluate the possibility of charge stratifying our engine.
Technical Paper

Cyclic Variations of Initial Flame Kernel Growth in a Honda VTEC-E Lean-Burn Spark-Ignition Engine

2000-03-06
2000-01-1207
Lean combustion in spark-ignition engines has long been recognised as a means of reducing both exhaust emissions and fuel consumption. However, problems associated with cycle-by-cycle variations in flame initiation and development limit the range of lean-burn operation. An experimental investigation was undertaken in order to quantify the effects of spark energy released and initial flame kernel growth on the cyclic variability of IMEP and crank angle at which 5% mass fraction was burned in a Honda VTEC-E, stratified-charge, pentroof-type, single-cylinder, optically accessed, spark-ignition engine. Simultaneous CCD images of the flame at the spark plug were acquired from two orthogonal views (one through the piston crown and one through the pentroof) on a cycle-by-cycle basis during the first 40 crank angle degrees after ignition timing, for isooctane port injection at an air to fuel ratio of 22, engine speed of 1500 RPM, 30% volumetric efficiency and 40° crank angle spark advance.
X