Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A Next Generation Cordierite Diesel Particle Filter with Significantly Reduced Pressure Drop

2011-04-12
2011-01-0813
Diesel particle filters (DPF) have become a standard aftertreatment component for all current and future on-road diesel engines used in the US. In Europe the introduction of EUVI is expected to also result in the broad implementation of DPF's. The anticipated general trend in engine technology towards higher engine-out NOx/PM ratios results in a somewhat changing set of boundary conditions for the DPF predominantly enabling passive regeneration of the DPF. This enables the design of a novel filter concept optimized for low pressure drop, low thermal mass for optimized regeneration and fast heat-up of a downstream SCR system, therefore reducing CO₂ implications for the DPF operation. In this paper we will discuss results from a next-generation cordierite DPF designed to address these future needs.
Technical Paper

Advanced Diesel Particulate Filter Design for Lifetime Pressure Drop Solution in Light Duty Applications

2007-01-23
2007-01-0042
Highly efficient wall-flow diesel particulate filters (DPF) are the primary means of PM emissions control in light-duty diesel vehicles. The successful commercialization of DPF technology has allowed combining attractive characteristics (good fuel economy, high low-end torque characteristics) of a diesel engine with significant PM emissions reductions to meet the stringent legislation. The design for advanced filter systems is driven by the lifetime pressure drop requirements with the accumulation of non-combustible materials (ashes) over time in the filter. More compact filter designs can be achieved by using filters with the proprietary Asymmetric Cell Technology (ACT) providing a larger inlet channel volume and therefore a higher ash storage capacity in the same space envelope without compromising the filter bulk heat capacity and mechanical integrity.
Technical Paper

Impacts of B20 Biodiesel on Cordierite Diesel Particulate Filter Performance

2009-11-02
2009-01-2736
Engine laboratory tests were conducted to assess the impact of B20 biodiesel on the performance of cordierite diesel particulate filters (DPFs). Test fuels included 20% soy based methyl ester blended into ultra low sulfur diesel fuel, and two ULSD on-road market fuels. B20 has a higher cetane number, boiling point and oxygen content than typical on-road diesel fuels. A comparative study was performed using a model year 2007 medium duty diesel truck engine. The aftertreatment system included a diesel oxidation catalyst (DOC) followed by a cordierite wall flow DPF. A laboratory-grade supplemental fuel doser was used in the exhaust stream for precise regeneration of the DPF. Tests revealed that the fuel dosing rate was higher and DOC fuel conversion efficiency was poorer for the B20 fuel during low exhaust temperature regenerations. The slip of B20 fuel past the DOC was shown to produce significantly higher exotherms in the DPF during regeneration.
X