Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Potential for Reducing the Weight of a Martian Greenhouse

2001-07-09
2001-01-2360
Use of the local resources on Mars could reduce the cost of life support significantly. Theoretically, Closed Ecological Systems (CES) isolated from surroundings and functioning on the basis of a closed cycle of matter transformation are the most reliable systems for life support in open space or on the surface of non-terrestrial bodies such as the Moon or Mars. But these systems require a relatively high initial mass (which is a critical factor in space flight) in comparison to supply-based systems. In addition CESs are a useful scientific abstraction though they have never been reached in reality. To minimize the cost of life support on Mars, we need to find scenarios and technologies such as a Martian Greenhouse (MG) which are based on use of the planet’s indigenous sources of energy and materials (natural illumination, carbon dioxide, water, nutrient elements for plants in the planetary soil). Our initial analysis shows that such approaches are possible and cost effective.
Technical Paper

Impact of Waste Processing Options on System Closure and Mission ESM

2002-07-15
2002-01-2519
The technology selected for waste processing has a major effect on system closure and mission equivalent system mass (ESM). In particular, recovery of the water content of solid waste can make the difference between a mission being water poor and water rich. Potential alternative sources of water that need to be considered would include recovery of water from carbon dioxide reduction, and in situ resources. This paper looks at a range of waste-processing scenarios and calculated system ESM impacts related to these options. The lowest ESM approach is generally storage or dumping. However, other issues also need to be considered. Processing may be driven by requirements such as the need to recover commodities like water, prevent release of toxic gases into the spacecraft environment, planetary protection requirements, and interface loads.
X