Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Improved Design of Onboard Control of Refueling Emissions

1990-02-01
900155
Onboard refueling control technology has been successfully applied to two vehicles with 98+% efficiency in tests with 10.5 RVP fuel at 84° F. The Onboard system, which controls exhaust, evaporative, refueling, and so called “running losses”, was constructed out of components found in current automotive evaporative control systems. During refueling, the tank vapors are forced into the enhanced charcoal canister by a flowing liquid seal in the fillpipe. The canister was removed from the engine compartment and mounted within the vehicle frame close to the fuel tank. Each vehicle demonstrates a different possible safe location from a crash worthiness viewpoint. In order to further improve safety by preventing the expulsion of liquid gasoline upon gas cap removal, the orifices in the production tank vent lines were removed so that the fuel tank is at atmospheric pressure at all times. As modified, no significant driveability differences from production vehicles were found.
Technical Paper

Impact of Fuel Sulfur on Gasoline and Diesel Vehicle Emissions

2006-10-16
2006-01-3370
Recent years have seen dramatic reductions in gasoline and diesel sulfur concentrations in the United States, Europe, Japan and other countries. Many developing countries are evaluating the appropriate sulfur levels to choose for the future. This paper examines the current state of knowledge concerning the impact of fuel sulfur on exhaust emissions, and the sensitivity of exhaust aftertreatment technology to fuel sulfur. Gasoline vehicles achieve very low emissions through use of three-way catalysts. These systems are relatively insensitive to sulfur, being able to operate on levels of up to 500 ppm. Further reduction in sulfur will produce additional, small emission reductions. Diesel emissions may be reduced significantly using engine modifications, oxidation catalysts or exhaust gas recirculation, which may require sulfur levels of 500 ppm.
Technical Paper

Fuel Composition Effects on Automotive Fuel Economy - Auto/Oil Air Quality Improvement Research Program

1993-03-01
930138
Fuel economy measurements from portions of Phase I of the Auto/Oil Air Quality Improvement Research Program were analyzed. The following fuel variables were examined: aromatics, olefins, T90, RVP, and various oxygenates (MTBE, ETBE and ethanol). Two vehicle fleets were tested: twenty 1989 vehicles and fourteen 1983-1985 vehicles. Three measures of fuel economy were analyzed. EPA Fuel Economy used the calculation defined in the Federal Register and is an attempt to correct for changes in fuel properties. Volumetric Fuel Economy is based on a carbon balance calculation and is a measure of the actual volume of gasoline burned. Energy Specific Fuel Economy is a measure of fuel economy based on energy content. The following fuel changes resulted in reductions of Volumetric Fuel Economy in both fleets: reduced aromatics, reduced olefins, reduced T90, and addition of oxygenates. Changes in RVP did not have a significant effect on fuel economy.
Technical Paper

Effects of Gasoline Sulfur Level on Exhaust Mass and Speciated Emissions: The Question of Linearity - Auto/Oil Air Quality Improvement Program

1993-10-01
932727
Effects of gasoline sulfur content on emissions were measured in a fleet of ten 1989 model year vehicles. Two ranges of sulfur content were examined. In a set of five fuels, reducing sulfur from 450 to 50 ppm, reduced fleet average tailpipe emissions of HC, NMHC and CO each by about 18%, and reduced NOx 8%. The largest effect on HC and CO emissions was observed in FTP Bag 2. This and the absence of any significant effect on engine emissions indicate that sulfur affected the performance of the catalytic converters. The response of HC and NMHC to fuel sulfur content was non-linear and increased as sulfur level was reduced. In the second set of three fuels, reducing sulfur from 50 to 10 ppm reduced HC and NMHC by 6% and CO by 10%, but had no significant effect on NOx. The effects on HC, NMHC and NOx were not significantly different from predictions based on the prior fuel set. The reduction in CO was larger than predicted.
Technical Paper

Effects of Gasoline Properties (T50, T90, and Sulfur) on Exhaust Hydrocarbon Emissions of Current and Future Vehicles: Speciation Analysis - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952505
Species analyses have been performed on engine-out and tailpipe hydrocarbon mass emissions to help understand why fuels with higher T50 and/or T90 distillation temperatures produce higher engine-out and tailpipe hydrocarbon emissions and why fuels with higher T90 distillation temperatures produce higher engine-out and tailpipe specific reactivities. Species analyses were also performed to examine the effects of fuel sulfur level on engine-out and tailpipe species and specific reactivities. These analyses were performed on three different test-vehicle fleets representing varying levels of emissions control technology and the effect of emissions control technology was examined. Individual hydrocarbon species concentrations in both the engine-out and tailpipe were found to correlate linearly with the concentrations of the same species in the fuel, implying that a small fraction of the fuel escapes the combustion process and conversion over the catalyst.
Technical Paper

Effects of Gasoline Properties (T50, T90, and Sulfur) on Exhaust Hydrocarbon Emissions of Current and Future Vehicles: Modal Analysis - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952504
Modal analyses have been performed on engine-out and tailpipe hydrocarbon mass emissions to help understand why fuels with higher T50 and/or T90 distillation temperatures produce somewhat higher engine-out hydrocarbon emissions and substantially higher tailpipe hydrocarbon emissions. Modal analyses were also performed to examine how increased fuel sulfur increases tailpipe hydrocarbon emissions and to identify which gasoline properties in this study are responsible for the lower tailpipe hydrocarbon emissions with reformulated gasolines. These analyses were performed on three different test vehicle fleets representing varying levels of emissions control technology. The modal analyses showed that the substantially higher tailpipe hydrocarbon emissions from fuels with high T50 and/or T90 distillation temperatures result primarily from these fuels producing substantially higher engine-out hydrocarbon emissions during the first cycle of the Federal Test Procedure (FTP).
Technical Paper

Gasoline Reformulation and Vehicle Technology Effects on Emissions - Auto/Oil Air Quality Improvement Research Program

1995-10-01
952509
Engine-out and tailpipe exhaust, and hot soak evaporative emissions of two reformulated test gasolines and an Industry Average reference gasoline were compared in four vehicle fleets designed for progressively lower emission standards. The two reformulated gasolines included: 1) a gasoline meeting 1996 California Phase 2 regulatory requirements, and 2) a gasoline blended to the same specifications but without an oxygenated component. These two gasolines were compared with the Auto-Oil Air Quality Improvement Research Program's (AQIRP) Industry Average gasoline representing 1988 national average composition. The vehicle fleets were the AQIRP Older (1983 to 85MY) and Current (1989MY) vehicle fleets used in prior studies, and two new AQIRP test fleets, one designed to 1994 Federal Tier 1 standards and a prototype Advanced Technology fleet designed for lower emission levels of 1995 and later.
X