Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Experimental Validation of a New Thermodynamic Method for TDC Determination

2007-09-16
2007-24-0052
In-cylinder pressure analysis is becoming more and more important both for research and development purpose and for control and diagnosis of internal combustion engines; directly measured by means of a combustion chamber pressure transducers or evaluated by analysing instantaneous engine speed [1,2,3,4], in-cylinder pressure allows the evaluation of indicated mean effective pressure (IMEP), combustion heat release, combustion phase, friction pressure, etc…It is well known to internal combustion engine researchers that for a right evaluation of these quantities the exact determination of Top Dead Centre (TDC) is of vital importance: a 1° error on TDC determination can lead to evaluation errors of about 10% on the IMEP and 25% on the heat released by the combustion.
Technical Paper

Reliable TDC position determination: a comparison of different thermodynamic methods through experimental data and simulations

2008-10-07
2008-36-0059
It is known to internal combustion researcher that the correct determination of the crank position when the piston is at Top Dead Centre (TDC) is very important, since an error of 1 crank angle degree (CAD) can cause up to a 10% evaluation error on indicated mean effective pressure (IMEP) and a 25% error on the heat released by the combustion: the TDC position should be then known within a precision of 0.1 CAD. This task can be accomplished by means of a dedicated capacitive sensor, which allows a measurement within the required 0.1 degrees precision. Such a sensor has a substantial cost and its use is not really fast; a different approach can be followed using a thermodynamic method, whose input is the pressure curve sampled during the compression and expansion strokes of a “motored” (i.e. without combustion) cylinder. In this work the authors compare an original thermodynamic method with other ones available in literature, by means of both experimental and simulated pressure curves.
X