Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Friction inside Wheel Hub Bearings: Evaluation through Analytical Models and Experimental Methodologies

2007-09-16
2007-24-0138
This paper presents an experimental methodology which can be adopted to measure the friction torque of the bearings in the wheel hubs of passenger vehicles. The first section of the paper highlights the reasons why an experimental device is necessary to have an objective evaluation of the performance of the bearing in terms of friction. In particular, the high level of approximation of the current formulas for the estimation of the friction inside a single bearing is discussed and demonstrated. An analytical methodology for the evaluation of the distribution of the axial load between the two bearings of the wheel hub is presented. However, its practical application for the precise calculation of the distribution of the load has to be checked through experimental tests.
Technical Paper

Electro-Hydraulic Braking System Modelling and Simulation

2003-10-19
2003-01-3336
The first step toward a braking system ‘by wire’ is Electro-Hydraulic Braking System (EHB). The paper describes a method to evaluate through virtual experimentation the actual improvement in vehicle behaviour, from the point of view of both handling and comfort, including also pedal feeling, due to EHB. The first step consisted in modelling the hydraulic unit, comprehensive of sensors. Then it was conceived a control logic devoted to medium-low intensity braking manoeuvres, without ABS intervention, to determine an optimal braking force distribution and pedal feeling depending on the manoeuvre. A failsafe strategy, complete of on board diagnosis, to prevent dangerous system behaviour in the eventuality of a component failure was carried out and tested. Finally, EHB wheel pressure sensors were used to improve both ABS performance, increasing the adherence estimation, and Vehicle Dynamics Control (VDC) performance, through a more precise actuation.
Technical Paper

Experimental Validation of a Heavy Goods Vehicle Fuel Consumption Model

2011-04-12
2011-01-1234
Over the last decade the simulation of driving cycles through longitudinal vehicle models has become an important stage in the design, analysis and selection of vehicle powertrains. This paper presents an overview of existing software packages, along with the development of a new multipurpose driving cycle simulator implemented in the Matlab/Simulink environment. In order to evaluate the performance of the simulator, a MAN TGL 12.240 multi-usage delivery vehicle was fitted with a CAN-bus data logger and used to create a series of ‘real-life’ drive cycles. These were inputted into the vehicle model and the simulated fuel mass flow-rate and engine rotational speed were compared to those experimentally obtained.
X