Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Computer Simulation of In-Vehicle Boom Noise

1997-05-20
971914
In the design of an automobile, an important consideration is to minimize the amount of “boom” noise that the vehicle occupant could experience. Vehicles equipped with four cylinder engines can experience powertrain boom noise in the 40 to 200 Hz frequency range. Boom noise can also be generated by road input, and it is just as annoying. In this paper, a CAE methodology for predicting boom noise is demonstrated for a vehicle in the early design stage in which only 3-D CAD geometry exists. From the CAD geometry, a detailed finite element (FE) model is constructed. This FE model is then coupled with an acoustic model of the interior cavity. The coupled structural-acoustic model is used to predict acoustic response due to powertrain inputs. As a part of the detailed design process, various design modifications were considered and implemented in the vehicle system model. Many of these modifications proved successful at reducing the boom levels in the vehicle.
Technical Paper

The Interactive NVH Simulator as a Practical Engineering Tool

2003-05-05
2003-01-1505
Experiencing the results of virtual NVH analysis in an immersive physical simulation is the only accurate method of developing vehicle, system or component targets and designs. This paper describes an engineering approach specifically created to enable physical interaction with test, CAE and hybrid NVH models, at every stage in the vehicle design process from concept to full detail. It explains the need for sound and vibration decomposition and synthesis, and interactive sound and vibration replay. Implementation of this process has led to the development of engineering tools that enable Interactive NVH Simulation. The paper also describes the practical use an engineer can make of a ‘rapid prototyping’ desktop NVH simulator in the design process. A full scale NVH Simulator is then used to allow evaluation of final design alternatives under realistic driving conditions by non-specialists (i.e. the customer) as well as specialists.
X