Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Quantification of Skeletal and Soft Tissue Contributions to Thoracic Response in a Dynamic Frontal Loading Scenario

2018-11-12
2018-22-0005
Thoracic injuries continue to be a major health concern in motor vehicle crashes. Previous thoracic research has focused on 50th percentile males and utilized scaling techniques to apply results to different demographics. Individual rib testing offers the advantage of capturing demographic differences; however, understanding of rib properties in the context of the intact thorax is lacking. Therefore, the objective of this study was to obtain the data necessary to develop a transfer function between individual rib and thoracic response. A series of non-injurious frontal impacts were conducted on six PMHS, creating a loading environment commensurate to previously published individual rib testing. Each PMHS was tested in four tissue states: intact, intact with upper limbs removed, denuded, and eviscerated. Following eviscerated thoracic testing, eight individual mid-level ribs from each PMHS were removed and loaded to failure.
Technical Paper

Biomechanical Responses and Injury Assessment of Post Mortem Human Subjects in Various Rear-facing Seating Configurations

2021-04-02
2020-22-0005
The objective of this study was to generate biomechanical corridors from post-mortem human subjects (PMHS) in two different seatback recline angles in 56 km/h sled tests simulating a rear-facing occupant during a frontal vehicle impact. PMHS were placed in a production seat which included an integrated seat belt. To achieve a repeatable configuration, the seat was rigidized in the rearward direction using a reinforcing frame that allowed for adjustability in both seatback recline angle and head restraint position. The frame contained instrumentation to measure occupant loads applied to the head restraint and seatback. To measure PMHS kinematics, the head, spine, pelvis, and lower extremities were instrumented with accelerometers and angular rate sensors. Strain gages were attached to anterior and posterior aspects of the ribs, as well as the mid-shaft of the femora and tibiae, to determine fracture timing. A chestband was installed at the mid sternum to quantify chest deformation.
X