Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Robust Semi-Active Ride Control under Stochastic Excitation

2014-04-01
2014-01-0145
Ride control of military vehicles is challenging due to varied terrain and mission requirements such as operating weight. Achieving top speeds on rough terrain is typically considered a key performance parameter, which is always constrained by ride discomfort. Many military vehicles using passive suspensions suffer with compromised performance due to single tuning solution. To further stretch the performance domain to achieving higher speeds on rough roads, semi-active suspensions may offer a wide range of damping possibilities under varying conditions. In this paper, various semi-active control strategies are examined, and improvements have been made, particularly, to the acceleration-driven damper (ADD) strategy to make the approach more robust for varying operating conditions. A seven degrees of freedom ride model and a quarter-car model were developed that were excited by a random road process input modeled using an auto-regressive time series model.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Technical Paper

Integrated Exhaust Manifold Cylinder Head Design Methodology for RDE in Gasoline Engine Application

2020-04-14
2020-01-0169
In recent years, worldwide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFÉ) targets, as set by international regulatory authorities. Many technologies have been already developed, or are currently under study by automotive manufacturer for gasoline engines, to meet legislated targets. In-line with the above objective, there are many technologies available in the market to expand lambda 1 (λ=1) region by reducing fuel enrichment at high load-high revolutions per minute (RPM) by reducing exhaust gas temperature (for catalyst protection) for RDE regulation [1]. Integrated Exhaust Manifold (IEM) is the key technology for the Internal Combustion (IC) for the subjected matter as catalyst durability protection is done by reducing exhaust gas temperatures instead of injecting excess fuel for cooling catalyst.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Technical Paper

Real-Time Driving Simulation of Magneto-Rheological Active Damper Stryker Suspension

2012-04-16
2012-01-0303
Real-time driving simulations are an important tool for verifying vehicle and vehicle component designs with a driver in the loop. They not only provide a cost effective solution but also an ability to verify designs in a safe and controlled operating environment. A real-time driving experiment has been developed for Stryker to compare the ride and handling performance of a baseline passive suspension to that of a Magneto-Rheological (MR) semi-active damper suspension. The Tank Automotive Research Development and Engineering Center (TARDEC) has integrated this new suspension into a real time vehicle dynamics model of the Stryker using the MR suspension model developed by the Original Equipment Manufacturer (OEM). Using this real-time model and the TARDEC Ride Motion Simulator (RMS), TARDEC associates, along with associates from the Stryker Program Management office and the suspension OEM were able to drive and compare the passive and MR Stryker in a virtual environment.
Technical Paper

Mountain Braking Test Venue Study

2014-09-28
2014-01-2526
Assessment of braking performance that includes brake fade is a critical part of the evaluation of military light tactical vehicles as it is for conventional light cars and trucks. These vehicles are sometimes called upon to operate in severe mountain regions that challenge the braking performance well beyond the environment in which these vehicles are normally operated. The U.S. Army Test Operating Procedure (TOP) 2-2-608 includes a test schedule conducted in the mountainous region near Jennerstown, Pennsylvania. While this test procedure represents a typical mountain environment, it does not represent the most severe mountain descents that can be encountered across the United States. As a preliminary step to developing a representative severe mountain descent braking test, mountain roads throughout the United States were evaluated analytically to identify potential test venues.
Technical Paper

Mobility Boundaries for the Wheel Normal Reaction

2022-03-29
2022-01-0360
When a vehicle moves over uneven ground, motion of the sprung and unsprung masses causes dynamic shifting in the load transmitted to the ground, making the normal reaction in the tire-soil patch a continuously changing wheel parameter that may affect vehicle performance. At high loads, sinkage of the wheel can become high as the wheel digs into the soil. At low loads, the wheel can have difficulty acquiring sufficient traction. Additionally, steerability of the wheel can be diminished at very low loads. Controlling the damping forces in the suspension that is usually used to improve ride quality and stabilize motion of the sprung mass can result in an increase in the dynamic variation of the wheel normal reaction and cause vehicle performance deterioration. In this paper, a method is developed to establish boundary constraints on the dynamic normal reaction to maintain reasonable tire-terrain mobility characteristics.
X