Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Study on Combustion Chamber Geometry Effects in an HCCI Engine Using High-Speed Cycle-Resolved Chemiluminescence Imaging

2007-04-16
2007-01-0217
The aim of this study is to see how geometry generated turbulence affects the Rate of Heat Release (ROHR) in an HCCI engine. HCCI combustion is limited in load due to high peak pressures and too fast combustion. If the speed of combustion can be decreased the load range can be extended. Therefore two different combustion chamber geometries were investigated, one with a disc shape and one with a square bowl in piston. The later one provokes squish-generated gas flow into the bowl causing turbulence. The disc shaped combustion chamber was used as a reference case. Combustion duration and ROHR were studied using heat release analysis. A Scania D12 Diesel engine, converted to port injected HCCI with ethanol was used for the experiments. An engine speed of 1200 rpm was applied throughout the tests. The effect of air/fuel ratio and combustion phasing was also studied.
Technical Paper

Multiple Point Ion Current Diagnostics in an HCCI Engine

2004-03-08
2004-01-0934
Interest in ion current sensing for HCCI combustion arises when a feedback signal from some sort of combustion sensor is needed in order to determine the state of the combustion process. A previous study has revealed that ion current sensors in the form of spark plugs can be used instead of expensive piezoelectric transducers for HCCI combustion sensing. Sufficiently high ion current levels were achieved when using relatively rich mixtures diluted with EGR. The study also shows that it is not the actual dilution per se but the actual air/fuel equivalence ratio which is important for the signal level. Conclusions were made that it is possible to obtain information on combustion timing and oscillating wave phenomena from the measurements. However, the study showed that the ion current is local compared to the pressure which is global in the combustion chamber.
Technical Paper

The Effect of Piston Topland Geometry on Emissions of Unburned Hydrocarbons from a Homogeneous Charge Compression Ignition (HCCI) Engine

2001-05-07
2001-01-1893
The effect of crevice volumes on the emissions of unburned hydrocarbons from a Homogeneous Charge Compression Ignition (HCCI) engine has been experimentally investigated. By varying the size and the geometry of the largest crevice, the piston topland, it was possible to ascertain whether or not crevices are the largest source of HC. Additionally, information on quenching distances for ultra lean mixtures was obtained. The tests were performed on a single cylinder engine fuelled with iso-octane. The results showed that most of the unburned hydrocarbons descend from the crevices. Increasing the topland width to some degree lead to an increase in HC. A further increase in topland width (>1.3 mm) resulted in a reduction of HC when using mixtures richer than λ ≈ 2.8, indicating that some of the mixture trapped in the topland participates in the combustion. In conditions when combustion occurred in the topland, the HC was rather insensitive to the height of the topland.
Technical Paper

The Effect of Combustion Chamber Geometry on HCCI Operation

2002-03-04
2002-01-0425
The effect of the combustion chamber geometry and the turbulence on Homogeneous Charge Compression Ignition (HCCI) operation has been experimentally investigated. A high turbulent square bowl in piston combustion chamber has been compared with a low turbulent disc combustion chamber. The results showed that the combustion chamber geometry plays large role for HCCI combustion. At the same operating conditions, the peak combustion rate for the square bowl combustion chamber was much lower compared to the disc combustion chamber. The combustion duration was in some cases almost a factor two longer for the square bowl combustion chamber. The lower combustion rate with the square bowl was due larger heat losses, lower combustion efficiency and higher turbulence.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

Fuel Effects on Ion Current in an HCCI Engine

2005-05-11
2005-01-2093
An interest in measuring ion current in Homogeneous Charge Compression Ignition (HCCI) engines arises when one wants to use a cheaper probe for feedback of the combustion timing than expensive piezo electric pressure transducers. However the location of the ion current probe, in this case a spark plug, is of importance for both signal strength and the crank angle position where the signal is obtained. Different fuels will probably affect the ion current in both signal strength and timing and this is the main interest of this investigation. The measurements were performed on a Scania D12 engine in single cylinder operation and ion current was measured at 7 locations simultaneously. By arranging this setup there was a possibility to investigate if the ion current signals from the different spark plug locations would correlate with the fact that, for this particular engine, the combustion starts at the walls and propagates towards the centre of the combustion chamber.
Technical Paper

Start of Injection Strategies for HCCI-combustion

2004-10-25
2004-01-2990
Homogeneous Charge Compression Ignition (HCCI) has a great potential for low NOx emissions but problems with emissions of unburned hydrocarbons (HC). One way of reducing the HC is to use direct injection. The purpose of this paper is to present experimental data on the trade off between NOx and HC. Injection timing, injection pressure and nozzle configuration all effect homogeneity of the mixture and thus the NOx and HC emissions. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. A common rail (CR) system has been used to control injection pressure and timing. The combustion using injectors with different nozzle hole diameters and spray angle, both colliding and non-colliding, has been studied. The NOx emission level changes with start of injection (SOI) and the levels are low for early injection timing, increasing with retarded SOI. Different injectors produce different NOx levels.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1833
An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
Technical Paper

Simultaneous Formaldehyde and Fuel-Tracer LIF Imaging in a High-Speed Diesel Engine With Optically Accessible Realistic Combustion Chamber

2005-09-11
2005-24-008
Simultaneous laser-induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a high-speed diesel engine. N-heptane and isooctane were used as fuel and toluene was used as a tracer. This arrangement made it possible to make simultaneous measurements of toluene by exciting at 266 nm and detecting at 270-320 nm while exciting formaldehyde at 355 nm and detecting at 400-500 nm. The aim of this study is to investigate how traditional fuel tracer and natural-occurring formaldehyde formed in the cool chemistry are transported in the piston bowl. A range of ignition delays were created by running the engine with different amounts of EGR. During this sweep the area where the low-temperature reactions take place were studied. The measurements were performed in a 0.5-l, single-cylinder optical engine running under conditions simulating a cruise-point, i.e., about 2.2 bar imep.
X