Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Analysis of a Prechamber Ignited HPDI Gas Combustion Concept

2020-04-14
2020-01-0824
High-pressure direct injection (HPDI) of natural gas into the combustion chamber enables a non-premixed combustion regime known from diesel engines. Since knocking combustion cannot occur with this combustion process, an increase in the compression ratio and thus efficiency is possible. Due to the high injection pressures required, this concept is ideally suited to applications where liquefied natural gas (LNG) is available. In marine applications, the bunkering of and operation with LNG is state-of-the-art. Existing HPDI gas combustion concepts typically use a small amount of diesel fuel for ignition, which is injected late in the compression stroke. The diesel fuel ignites due to the high temperature of the cylinder charge. The subsequently injected gas ignites at the diesel flame. The HPDI gas combustion concept presented in this paper is of a monovalent type, meaning that no fuel other than natural gas is used.
Technical Paper

Simulation-Based Control of Transient SCE Operation

2017-03-28
2017-01-0544
It is critical for gas and dual fuel engines to have improved transient characteristics in order that they can successfully compete with diesel engines. Testing of transient behavior as well as of different control strategies for the multi-cylinder engine (MCE) should already be done on the single cylinder engine (SCE) test bed during the development process. This paper presents tools and algorithms that simulate transient MCE behavior on a SCE test bed. A methodology that includes both simulation and measurements is developed for a large two-stage turbocharged gas engine. Simple and fast models and algorithms are created that are able to provide the boundary conditions (e.g., boost pressure and exhaust back pressure) of a multi-cylinder engine in transient operation in real-time for use on the SCE test bed. The main models of the methodology are discussed in detail.
Technical Paper

ROHR Simulation for DI Diesel Engines Based on Sequential Combustion Mechanisms

2006-04-03
2006-01-0654
In this paper a zero-dimensional simulation methodology for efficient pre-optimization of the combustion process in DI diesel engines is presented. A new model for the calculation of the rate of heat release is unveiled. It is based on the separate description of both the primary processes closely related to the fuel jet as well as the following combustion of the fuel mass remaining after the end of injection. The modeling of fuel mass distribution between premixed and diffusion combustion as well as a model for the fuel preparation time are explained. Furthermore, models for the calculation of ignition delay and premixed combustion based on an extended Arrhenius formulation are discussed, as well as turbulent combustion on the basis of a Magnussen model. The new features of the heat release model prove to be necessary to describe the effects of modern high-pressure fuel injection systems on the combustion process regarding the strong influence of the injection rate on the burn rate.
Technical Paper

Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept

2019-04-02
2019-01-0259
Using natural gas in large bore engines reduces carbon dioxide emissions by up to 25% at a lower fuel cost than diesel engines. In demanding applications with highly transient operating profiles, however, premix gas engines have disadvantages compared to diesel engines because of the potential for knocking and misfire to occur. Operating a gas engine using the diesel cycle requires high gas injection pressures. Furthermore, a source of ignition is needed due to the high autoignition temperature of methane. State-of-the-art solutions inject a small quantity of diesel fuel before introducing the natural gas. One monofuel alternative ignites the gas jets with flame torches that originate in a prechamber. This paper presents the simulation based development of a prechamber ignited high pressure direct injection (HPDI) gas combustion concept and subsequent experimental validation.
Technical Paper

Application of the HiL Method to Develop Transient Operating Strategies for Highly Flexible Power Generation in Gas Engine Power Plants

2021-04-06
2021-01-0421
The transient operation of gas engines is of paramount importance to sustainable power generation as it increases the share of renewable energy. Fast-reacting and highly flexible power plants are an integral component of scenarios for the smart power generation of the future. Modern gaseous fueled large bore engines already adapt to fluctuating load demands quickly and also provide high efficiency throughout all load conditions. However, future energy systems that integrate predominantly fluctuating renewables will require even further improved transient capabilities of these engines. The goal is to be competitive with diesel engines in applications with the highest transient requirements and to meet the high transient requirements while simultaneously generating significantly less emissions than other fossil generation facilities to support the future sustainable power supply.
Technical Paper

Advanced Heat Transfer Model for CI Engines

2005-04-11
2005-01-0695
A realistic simulation of the wall heat transfer is an imperative condition for the accurate analysis and simulation of the working process of IC engines. Due to its simplicity in application, zero-dimensional wall heat transfer models dominate engine cycle simulation in practice. However, experience shows that existing zero-dimensional models for wall heat transfer do not yield satisfactory results in certain applications. This is mainly due to a lack of consideration of the actual flow field in the cylinder. In this paper a quasi-dimensional heat transfer model, which is based on a detailed description of the turbulent flow field in the combustion chamber, is described. The model presents a consistent approach for the high pressure as well as the low pressure part of the cycle. The results of the heat transfer model are compared with results from the correlation by Woschni/Huber and with experimental results from various DI Diesel engines.
X