Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of Control Strategies for Compressor Rapid Cycling

2004-03-08
2004-01-0913
Compressor rapid cycling has been shown to be capable of delivering the advantages of variable capacity control without the use of variable speed compressors. For automotive air conditioning systems, rapid cycling can be achieved by engaging and disengaging the clutch drive. However, rapid cycling results in oscillations in evaporator superheat which degrade system performance and may damage the compressor. This paper discusses the dynamics associated with compressor rapid cycling and possible system configurations and control strategies for modulating the expansion valve to regulate superheat during rapid cycling operation. These strategies include feedback control strategies such as thermostatic expansion valve (TXV), and PI control, as well as feedforward control strategies. The feedback control strategies regulate the average superheat temperature, but fail to eliminate the oscillations caused by rapid cycling.
Technical Paper

Improving Energy Efficiency in Automotive Vapor Compression Cycles through Advanced Control Design

2006-04-03
2006-01-0267
This paper presents an experimental analysis of the performance of various control strategies applied to automotive air conditioning systems. A comparison of the performance of a thermal expansion valve (TEV) and an electronic expansion valve (EEV) over a vehicle drive cycle is presented. Improved superheat regulation and minor efficiency improvements are shown for the EEV control strategies. The efficiency benefits of continuous versus cycled compressor operation are presented, and a discussion of significant improvements in energy efficiency using compressor control is provided. Dual PID loops are shown to control evaporator outlet pressure while regulating superheat. The introduction of a static decoupler is shown to improve the performance of the dual PID loop controller. These control strategies allow for system capacity control, enabling continuous operation and achieving significant energy efficiency improvements.
X