Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Three-Dimensional Computations of the Scavenging Process in an Opposed-Piston Engine

1994-10-01
941899
The effectiveness of scavenging, the displacement of residual combustion gases with fresh air, is examined in an advanced, high power-density diesel engine, consisting of a two-stroke, opposed-piston reciprocator with an ultra-high boost. KIVA-3, a three-dimensional code for modeling reactive flows with fuel injection, is used to study the effect of a variety design choices on scavenging. The parametric study includes the inclined angle of the intake ports, the exhaust port timing and size and the piston stroke-to-bore ratio. A baseline geometry of the opposed-piston engine is examined in detail, which models an existing mono-cylinder test rig. The baseline-design exhibits large asymmetries, nonsteady flow and large recirculation regions that degrade the scavenging. Significant improvement in the scavenging of the baseline design is observed with a uniform inclined angle of the inlet ports of about 20° and with a larger stroke-to-bore ratio (2.0 compared with 1.08).
Technical Paper

The Tab Method for Numerical Calculation of Spray Droplet Breakup

1987-11-01
872089
We present a method for calculating drop aerodynamic breakup in engine sprays. A short history is first given of the major milestones in the development of the stochastic particle method for calculating liquid fuel sprays. The most recent advance has been the discovery of the importance of drop breakup in engine sprays. We present a new method, called the TAB method, for calculating drop breakup. Some theoretical properties of the method are derived; its numerical implementation in the computer program KIVA is described; and comparisons are presented between TAB-method calculations and experiments and calculations using another breakup model.
X