Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Compact High-Pressure Intake Silencer with Multilayer Porous Material

2016-06-15
2016-01-1819
Intake noise has become one the main concerns in the design of highly-supercharged downsized engines, which are expected to play a significant role in the upcoming years. Apart from the low frequencies associated with engine breathing, in these engines other frequency bands are also relevant which are related to the turbocharger operation, and which may radiate from the high-pressure side from the compressor outlet to the charge air cooler. Medium frequencies may be controlled with the use of different typologies of resonators, but these are not so effective for relatively high frequencies. In this paper, the potential of the use of multi-layer porous materials to control those high frequencies is explored. The material sheets are located in the side chamber of an otherwise conventional resonator, thus providing a compact, lightweight and convenient arrangement.
Technical Paper

A Methodology for the Design of Engine Cooling Systems in Standalone Applications

2010-04-12
2010-01-0325
In this paper, a methodology for the design process of engine cooling systems is presented, which is based on the interaction among three programs: a code developed for radiator sizing and rating, a 3D commercial code used for the air circuit modeling, and a 1D commercial code used for the modeling and simulation of the complete engine cooling system. The aim of the developed methodology, in addition to ensure the system thermal balance, is the improvement of the design process of the cooling system itself, while shortening the development times, in non-automotive applications. An application to the design of a locomotive engine cooling system is presented. The system designed has been assembled and tested, showing the validity of the methodology, as well as the compliance of the designed system with the initially specified thermo-hydraulic constraints and requirements.
Technical Paper

On the Influence of Manifold Geometry on Exhaust Noise

1999-05-17
1999-01-1650
The influence of manifold geometry on exhaust noise is studied. First, a linear description of the problem is presented, so that potential relevant factors may be identified. Then a full non-linear simulation is performed, for a simple geometry, in order to check, in more realistic conditions, the ideas obtained from the linear theory. The results indicate that, although some qualitative trends may be obtained from the linear analysis, the role of back-reaction of the manifold on the engine (a non-linear coupling effect) may be determinant.
X