Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Wavelet Transform applied to Combustion Noise Analysis in High-speed DI Diesel Engines

2001-04-30
2001-01-1545
Traditionally, combustion noise in Diesel engines has been quantified by means of a global noise level determined in many cases through the estimation of the attenuation curve of the block using the traditional discrete Fourier transform technique. In this work, the wavelet transform is used to establish a more reliable correlation between in-cylinder pressure (sources) and noise (effect) during the combustion of a new generation 2 liter DI Diesel engine. Then, in a qualitative sense, the contribution of each source intrinsic to the combustion process is determined for four engine operating conditions and two injection laws. The results have shown high variations in both the in-cylinder pressure and noise power harmonics along the time, which indicates the non-stationary character of this process.
Technical Paper

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

2021-04-06
2021-01-0379
In modeling an Internal Combustion Engine, the combustion sub-model plays a critical role in the overall simulation of the engine as it provides the Mass Fraction Burned (MFB). Analytically, the Heat Release Rate (HRR) can be obtained using the Wiebe function, which is nothing more than a mathematical formulation of the MFB. The mentioned function depends on the following four parameters: efficiency parameter, shape factor, crankshaft angle, and duration of the combustion. In this way, the Wiebe function can be adjusted to experimentally measured values of the mass fraction burned at various operating points using a least-squares regression, and thus obtaining specific values for the unknown parameters. Nevertheless, the main drawback of this approach is the requirement of testing the engine at a given engine load/speed condition. Furthermore, the main objective of this study is to propose a predictive model of the Wiebe parameters for any operating point of the tested SI engine.
X