Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Gasoline PPC: A Parametric Study of Late Cycle Mixing Conditions using a Predictive Two-zone SRM Modeling Tool

2013-10-14
2013-01-2621
The relatively new combustion concept known as partially premixed combustion (PPC) has high efficiency and low emissions. However, there are still challenges when it comes to fully understanding and implementing PPC. Thus a predictive combustion tool was used to gain further insight into the combustion process in late cycle mixing. The modeling tool is a stochastic reactor model (SRM) based on probability density functions (PDF). The model requires less computational time than a similar study using computational fluid dynamics (CFD). A novel approach with a two-zone SRM was used to capture the behavior of the partially premixed or stratified zones prior to ignition. This study focuses on PPC mixing conditions and the use of an efficient analysis approach.
Technical Paper

Analyzing Factors Affecting Gross Indicated Efficiency When Inlet Temperature Is Changed

2018-09-10
2018-01-1780
Observations from engine experiments indicates that the gross indicated efficiency (GIE) increases when the inlet temperature (Tinlet) is lowered. The change in Tinlet affects several important factors, such as the heat release profile (affecting heat and exhaust losses), working fluid properties, combustion efficiency and heat transfer losses. These factors all individually contributes to the resulting change in GIE. However, due to their strong dependency to temperature it is not possible to quantify the contribution from each of these parameters individually. Therefore, a simulation model in GT-power has been created and calibrated to the performed engine experiments. With simulations the temperature dependency can be separated and it becomes possible to evaluate the contribution to GIE from each factor individually. The simulation results indicate that the specific heats of the working medium are the largest contributor.
Technical Paper

Simulation of System Brake Efficiency in a Double Compression-Expansion Engine-Concept (DCEE) Based on Experimental Combustion Data

2019-01-15
2019-01-0073
The double compression-expansion engine concepts (DCEE) are split-cycle concepts where the compression, combustion, expansion and gas exchange strokes occur in two or more different cylinders. Previous simulation studies reveal there is a potential to improve brake efficiency with these engine concepts due to improved thermodynamic and mechanical efficiencies. As a continuation of this project this paper studies an alternative layout of the DCEE-concept. The concept studied in this paper has three different cylinders, a compression, a combustion and an expansion cylinder. Overall system indicated and brake efficiency estimations were based on both engine experiments and simulations. The engine experiments were carried out at 10 different operating points and 5 fuelling rates (between 98.2 and 310.4 mg/cycle injection mass) at an engine speed of 1200 rpm. The inlet manifold pressure was varied between 3 and 5 bar.
Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

Reed Valve Evaluation and Selection for the Compressor Cylinder in Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0397
This paper shows the potential benefits of implementing four configurations of reed valves at the inlet of the two-stroke compressor used in the double compression expansion engine (DCEE) concept or 8-stroke engines over the conventional poppet valves used in 4-stroke internal combustion engines. To model the reed and poppet valve configurations, the discharge coefficient was estimated from RANS computational fluid dynamics simulations using ANSYS Fluent 2020 R1, with a pressure difference up to 0.099 bar. The calculated discharge coefficients for each case were then fed in a zero-one dimension model using GT-Power to understand the valve performance i.e. the volumetric efficiency of the compressor cylinder and the mean indicated pressure during the compression process at 1200 rpm.
X