Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Investigation of SCR Catalysts for Marine Diesel Applications

2017-03-28
2017-01-0947
Evolving marine diesel emission regulations drive significant reductions of nitrogen oxide (NOx) emissions. There is, therefore, considerable interest to develop and validate Selective Catalytic Reduction (SCR) converters for marine diesel NOx emission control. Substrates in marine applications need to be robust to survive the high sulfur content of marine fuels and must offer cost and pressure drop benefits. In principle, extruded honeycomb substrates of higher cell density offer benefits on system volume and provide increased catalyst area (in direct trade-off with increased pressure drop). However higher cell densities may become more easily plugged by deposition of soot and/or sulfate particulates, on the inlet face of the monolithic converter, as well as on the channel walls and catalyst coating, eventually leading to unacceptable flow restriction or suppression of catalytic function.
Technical Paper

Advanced Catalyst Coatings for Diesel Particulate Filters

2008-04-14
2008-01-0483
Novel catalytic coatings with a variety of methods based on conventional and novel synthesis routes are developed for Diesel Particulate Filters (DPFs). The developed catalytic composition exhibits significant direct soot oxidation as evaluated by reacting mixtures of diesel soot and catalyst powders in a thermogravimetric analysis apparatus (TGA). The catalyst composition was further deposited on oxide and non-oxide porous filter structures that were evaluated on an engine bench with respect to their filtration efficiency, pressure drop behavior and direct soot oxidation activity under realistic conditions. The effect of the catalyst amount on the filtration efficiency of non-oxide filters was also investigated. Evaluation of the indirect soot oxidation was conducted on non-oxide catalytic filters coated with precious metal.
Technical Paper

Advanced High Porosity Ceramic Honeycomb Wall Flow Filters

2008-04-14
2008-01-0623
A new platform of advanced ceramic composite filter materials for diesel particulate matter and exhaust gas emission control has been developed. These materials exhibit high porosity, narrow pore-size distribution, robust thermo-mechanical strength, and are extruded into high cell density honeycomb structures for wall-flow filter applications. These new high porosity filters provide a structured filtration surface area and a highly connected wall pore space which is fully accessible for multi-phase catalytic reactions. The cross-linked microstructure (CLM™) pore architecture provides a large surface area to host high washcoat/catalyst loadings, such as those required for advanced multi-functional catalysts (4-way converter applications).
Technical Paper

Simulation of Triangular-Cell-Shaped, Fibrous Wall-Flow Filters

2003-03-03
2003-01-0844
In the present work we apply a computational simulation framework developed for square-cell shaped honeycomb Diesel Particulate Filters to study the filtration, pressure drop and soot oxidation characteristics of recently developed triangular-cell-shaped, high porosity wall-flow filters. Emphasis is placed on the evaluation of the applicability and adaptation of the previously developed models to the case of triangular channels. To this end Computational Fluid Dynamics, asymptotic analysis, multichannel and “unit-cell” calculations are employed to analyze filter behavior and the results are shown to compare very well to experiments available in the literature.
Technical Paper

A Selective Particle Size Sampler Suitable for Biological Exposure Studies of Diesel Particulate

2006-04-03
2006-01-1075
The objective of this study is the design, construction and evaluation of a Selective Particle Size (SPS) sampler able to provide continuous delivery of diesel soot particles of specific size ranges. The design of the sampler combines principles of aerosol transport phenomena and separation technologies. Particles smaller than a given size are removed from the exhaust by diffusional deposition, while removal of particles above a given size is achieved by low pressure inertial impaction. The main application of the developed sampler is the exposure of biological samples such as cell and tissue cultures to selected sizes of diesel exhaust particles. By applying the SPS sampler to diesel exhaust it is demonstrated that it is possible to obtain two aerosol streams with widely separated particle size distributions (of nanometric dimensions), suitable for biological exposure studies.
Technical Paper

Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0911
As demand for wall-flow Diesel Particulate Filters (DPF) increases, accurate predictions of DPF behavior, and in particular their pressure drop, under a wide range of operating conditions bears significant engineering applications. In this work, validation of a model and development of a simulator for predicting the pressure drop of clean and particulate-loaded DPFs are presented. The model, based on a previously developed theory, has been validated extensively in this work. The validation range includes utilizing a large matrix of wall-flow filters varying in their size, cell density and wall thickness, each positioned downstream of light or heavy duty Diesel engines; it also covers a wide range of engine operating conditions such as engine load, flow rate, flow temperature and filter soot loading conditions. The validated model was then incorporated into a DPF pressure drop simulator.
Technical Paper

Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency

1989-02-01
890405
The present study investigates the pressure drop and filtration characteristics of wall-flow diesel particulate monoliths, with the aid of a mathematical model. An analytic solution to the model equations describing exhaust gas mass and momentum conservation, in the axial direction of a monolith cell, and pressure drop across its porous walls has been obtained. The solution is in very good agreement with available experimental data on the pressure drop of a typical wall-flow monolith. The capture of diesel particles by the monolith, is described applying the theory of filtration through a bed of spherical collectors. This simple model, is in remarkable agreement with the experimental data, collected during the present and previous studies, for the accumulation mode particles (larger than 0.1 μm).
X