Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Chemical Kinetic Mechanism of Compression Ignition Derived from Intermediate Species for PRF and Toluene/n-Heptane Fuel Systems

2011-08-30
2011-01-1784
Intermediate species formed in the cool ignition stage of autoignition were evaluated by exhaust gas analysis with FT-IR in a test engine at hot ignition suppressed conditions. PRF (iso-octane/n-heptane) and NTF (toluene/n-heptane) were used as the fuels. The fuel consumption rate decreases with increasing iso-octane content in PRF and toluene content in NTF. HCHO generation rate increases with increasing iso-octane content in PRF but the opposite trend was found in NTF. These tendencies correspond to the difference in the detail reaction mechanism for PRF and NTF oxidation.
Technical Paper

Monitoring Intermediate Species and Analysis of Their Role in HCCI Combustion

2005-09-11
2005-24-036
Two different species measurements have been conducted for compression ignition of dimethyl ether in a motored engine. Crank angle resolved pulse-valve sampling with a resolution improvement scheme enabled to detect partial fuel consumption and formation of intermediate like H2O2 and HCHO at a cool ignition, as well as their total consumption at a hot ignition. FTIR analysis of exhaust gas in single cool ignition conditions confirmed formation of HCOOH and HCOOCH3 in cool ignitions. Results obtained in a range of equivalence ratio support the advantage of 2000 version of Curran et al. DME oxidation model.
Technical Paper

Analysis of Reaction Mechanism Preparing Hot Ignition Observed in Homogeneous Compression of n-Heptane Air Mixture

2019-12-19
2019-01-2348
Multi-stage heat releases in homogenous charge compression ignition (HCCI) near the ignition threshold are analyzed in this study. Motored engine experiments are conducted with exhaust gas analysis by Fourier transform infrared spectrometer under hot ignition suppressed condition, in order to provide a deeper insight into the ignition mechanism of n-heptane. By increasing intake temperature from room temperature, heat release of low temperature oxidation (LTO) can be observed. Moreover, second heat release was observed after primary heat release of LTO, which increases rapidly with increasing intake temperature within narrow range below the high temperature oxidation (HTO) threshold. The mechanism of HTO preparation reaction is discussed.
Technical Paper

PRF and Toluene/n-heptane Mixture Comparison in HCCI Mode Ignition Using Transient Species Measurements and Simplified Model Analysis, Supported by 0-D and 3-D Simulations

2015-09-01
2015-01-1787
Exhaust gas analysis has been conducted for a test engine operated in HCCI mode at hot ignition suppressed condition, to detect intermediate species formed in low temperature oxidation (LTO). PRF (isooctane/ n-heptane) and NTF (toluene/ n-heptane) were used as fuel mixtures. The LTO fuel consumption decreases with increasing iso-octane content in PRF and toluene content in NTF, but only NTF showed a nonlinear effect. These tendencies were reproduced by O-D and 3-D simulations with detailed chemistry; however, quantitative differences were found between chemical models. The essential mechanism of high octane number fuel affecting the ignition property of n-heptane is discussed by developing a simplified model summarizing chain reaction of LTO, in which OH reproduction and fuel + OH reaction rate play important roles.
X