Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Experimental Investigations of the Tribological Properties of Lubricating Oil from Biodiesel Fuelled Medium Duty Transportation CIDI Engine

2008-04-14
2008-01-1385
Biodiesel is mono alkyl ester derived from vegetable oils through transesterification reaction and can be used as an alternative to mineral diesel. In the present research, methyl ester of rice-bran oil (ROME) is produced through transesterification of rice-bran oil using methanol in presence of sodium hydroxide (NaOH) catalyst. Various properties like viscosity, density, flash point, calorific value of the biodiesel thus prepared are characterized and found comparable to diesel. On the basis of previous research for performance, emission and combustion characteristics, a 20% blend of ROME (B20) was selected as optimum biodiesel blend for endurance test. Endurance test of 100 hours was conducted on a medium duty direct injection transportation diesel engine. Tests were conducted under predetermined loading cycles in two phases: engine operating on mineral diesel and engine fuelled with 20% biodiesel blend.
Technical Paper

Experimental Investigations on the Effect of Liner Surface Properties on Wear in Non-Firing Engine Simulator

2004-03-08
2004-01-0605
Several experimental studies have been conducted for evaluating coefficient of friction and wear in simulated engine conditions using a piston ring segment and a liner piece rubbing against each other in reciprocating mode under load and lubricated conditions. In the present experimental investigation, a non-firing engine simulator has been developed in order to simulate engine conditions to a much closer extent. This machine can operate at similar linear speed, stroke, and load and can simulate almost similar engine operating conditions except firing pressures. This machine can also be used for comparing liners with different surface properties and the effects of surface texture on wear and oil consumption. One cylinder liner has been used for experimentation and the wear and surface properties behaviour were evaluated at several locations in the liner. Surface profile, roughness parameters are evaluated at several locations in the liner and at the top compression ring.
Technical Paper

Oxidation Stability of Biodiesel Produced from Non-Edible Oils of African Origin

2011-04-12
2011-01-1202
Mono alkyl esters of long-chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, also known as biodiesel are well positioned to replace mineral diesel. The outstanding technical problem with biodiesel is that it is more susceptible to oxidation owing to its exposure to oxygen present in the air and high temperature. This happens mainly due to the presence of varying numbers of double bonds in the free fatty acid molecules. The chemical reactivity of esters can therefore be divided into oxidative and thermal instability, which can be determined by the amount and configuration of the olefinic unsaturation in the fatty acid chains. Many of the plant-derived fatty oils contain polyunsaturated fatty acids that are more prone to oxidation. Increasing production of biodiesel from vegetable oils (edible) places strain on food production, availability and price and leads to food versus fuel conflict.
Technical Paper

Comparative Study of PM Mass and Chemical Composition from Diesel and Biodiesel Fuelled CRDI SUV Engine

2012-01-09
2012-28-0012
Adverse health effects of particulate matter (PM) originating from diesel engine exhaust are largely attributed to the complex chemical composition of the exhaust species. This study was set out to characterize particulate emissions from a Euro-III-compliant modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at rated engine speed (1800 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. This study is mainly divided into two main sections, first one includes the gravimetric analysis in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICPOES). The second section includes real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs).
Technical Paper

Numerical and Experimental Investigation of Oil Jet Cooled Piston

2005-04-11
2005-01-1382
Thermal loading of diesel engine pistons has increased dramatically in recent years due to applications of various advanced technologies to meet low emission and high power requirements. Control of piston temperatures by cooling of pistons has become one of the determining factors in a successful engine design. The pistons are cooled by oil jets fired at the underside from the crankcase. Any undesirable piston temperature rise may lead to engine seizure because of piston warping. However, if the temperature at the underside of the piston, where oil jet strikes the piston, is above the boiling point of the oil being used, it may contribute to the mist generation. This mist significantly contribute to the non-tail pipe emissions in the form of unburnt hydrocarbons (UBHC's), which has unfortunately not been looked into so seriously, as the current stress of all the automobile manufacturers is on meeting the tail pipe emission legislative limits.
Technical Paper

Evaluation of Lanthanum Based Diesel Oxidation Catalyst for Emission Reduction with and without Ceria Support

2016-02-01
2016-28-0023
Diesel particulates are mainly composed of elemental carbon (EC) and organic carbon (OC) with traces of metals, sulfates and ash content. Organic fraction of the particulate are considered responsible for its carcinogenic effects. Diesel oxidation catalyst (DOC) is an important after-treatment device for reduction of organic fraction of particulates. In this study, two non-noble metal based DOCs (with different configurations) were prepared and evaluated for their performance. Lanthanum based perovskite (LaMnO3) catalyst was used for the preparation of DOCs. One of the DOC was coated with support material ceria (5%, w/w), while the other was coated without any support material. Prepared DOCs were retrofitted in a four cylinder water cooled diesel engine. Various emission parameters such as particulate mass, particle number-size distribution, regulated and unregulated emissions, EC/OC etc., were measured and compared with the raw exhaust gas emissions from the prepared DOCs.
X