Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Effect of Turbulence on HCCI Combustion

2007-04-16
2007-01-0183
This paper presents large eddy simulation (LES) and experimental studies of the combustion process of ethanol/air mixture in an experimental optical HCCI engine. The fuel is injected to the intake port manifolds to generate uniform fuel/air mixture in the cylinder. Two different piston shapes, one with a flat disc and one with a square bowl, were employed to generate different in-cylinder turbulence and temperature field prior to auto-ignition. The aim of this study was to scrutinize the effect of in-cylinder turbulence on the temperature field and on the combustion process. The fuel tracer, acetone, is measured using laser induced fluorescence (LIF) to characterize the reaction fronts, and chemiluminescence images were recorded using a high speed camera, with a 0.25 crank angle degree resolution, to further illustrate the combustion process. Pressure in the cylinder is recorded in the experiments.
Technical Paper

High-Speed PLIF Imaging for Investigation of Turbulence Effects on Heat Release Rates in HCCI Combustion

2007-04-16
2007-01-0213
High-speed laser diagnostics was utilized for single-cycle resolved studies of the fuel distribution in the combustion chamber of a truck-size HCCI engine. A multi-YAG laser system consisting of four individual Nd:YAG lasers was used for planar laser-induced fluorescence (PLIF) imaging of the fuel distribution. The fundamental beam from the lasers at 1064 nm was frequency quadrupled in order to obtain laser pulses at 266 nm suitable for excitation of acetone that was used as fuel tracer. Bursts of up to eight pulses with very short time separation were produced, allowing PLIF images with high temporal resolution to be captured within one single cycle event. The system was used together with a high-speed framing camera employing eight ICCD modules, with a frame-rate matching the laser pulse repetition rate.
Technical Paper

Investigation of Boundary Layer Behaviour in HCCI Combustion using Chemiluminescence Imaging

2005-10-24
2005-01-3729
A five-cylinder diesel engine, converted to a single cylinder operated optical engine is run in Homogeneous Charge Compression Ignition (HCCI) mode. A blend of iso-octane and n-heptane is used as fuel. An experimental study of the horizontal boundary layer between the main combustion and the non-reacting surface of the combustion chamber is conducted as a function of speed, load, swirl and injection strategy. The combustion behaviour is monitored by chemiluminescence measurements. For all cases an interval from -10 to 16 crank angles after top dead center (CAD ATDC) in steps of one CAD are studied. One image-intensified camera observes the boundary layer up close from the side through a quartz cylinder liner while a second camera has a more global view from below to see more large scale structure of the combustion. The averaged chemiluminescence intensity from the HCCI combustion is seen to scale well with the rate of heat release.
Technical Paper

The Effect of Unconventional Piston Movement on SI Engine Combustion and Emissions

2005-04-11
2005-01-1170
A major trend in current automotive research is hybridization of the power supply. This combination of electrical machine and combustion engine results, in some hybridization topologies, in a total decoupling of the combustion engine from the transmission. When the engine is decoupled from the transmission a new degree of freedom arises in engine design. The piston movement does not have to follow an evenly rotating shaft any more. It can be altered by the generator to achieve a movement found to be better from the point of efficiency or environmental concerns. Modelling work showed a potential of lowered NO emissions if the expansion could be delayed. The experimental study, conducted in a two piston Alvar engine, showed that the state of the art electrical machine (EM) propelling one of the crankshafts was too weak to change the crankshaft speed in an extent to give the fast volume changes required to change the emissions of the internal combustion engine (ICE).
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
Technical Paper

Optical Diagnostics of Laser-Induced and Spark Plug-Assisted HCCI Combustion

2005-04-11
2005-01-0129
HCCI (Homogeneous Charge Compression Ignition), laser-assisted HCCI and spark plug-assisted HCCI combustion was studied experimentally in a modified single cylinder truck-size Scania D12 engine equipped with a quartz liner and quartz piston crown for optical access. The aim of this study was to find out how and to what extent the spark, generated to influence or even trigger the onset of ignition, influences the auto-ignition process or whether primarily normal compression-induced ignition remains prevailing. The beam of a Q-switched Nd:YAG laser (5 ns pulse duration, 25 mJ pulse energy) was focused into the centre of the cylinder to generate a plasma. For comparison, a conventional spark plug located centrally in the cylinder head was alternatively used to obtain sparks at a comparable location. No clear difference in the heat releases during combustion between the three different cases of ignition start could be seen for the fuel of 80/20 iso-octane/n-heptane used.
Journal Article

Large Eddy Simulation and Experiments of the Auto-Ignition Process of Lean Ethanol/Air Mixture in HCCI Engines

2008-06-23
2008-01-1668
Recent experiments and numerical studies have showed that piston geometry has a significant effect on the homogeneous charge compression ignition (HCCI) process. There are two effects generated by the combustor geometry: the geometry affects the flow/turbulence in the cylinder; the geometry also affects the temperature stratification. The temperature stratification is more directly responsible for the observed alteration of the auto-ignition process. To clarify this issue further we present in this paper a study of two engines with the same geometry but difference ways of cooling. Measurement of the two engines - a metal engine and quartz piston engine, both with the same piston bowl geometry - is carried out. Large eddy simulation (LES) is used to simulate the flow, the temperature field and the auto-ignition process in the two engines. The fuel is ethanol with a relative air/fuel ratio of 3.3.
X