Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Spectroscopic Investigations and High Resolution Visualization of the Combustion Phenomena in a Boosted PFI SI Engine

2009-06-15
2009-01-1814
High spatial and temporal resolution optical techniques were applied in a spark ignition (SI) engine in order to investigate the thermal and fluid dynamic phenomena occurring during the combustion process. The experiments were realized in the combustion chamber of an optically accessible single-cylinder port-fuel injection (PFI) SI engine. The engine was equipped with a four-valve head and with an external boost device. Two fuel injection strategies at closed-valve and open-valve occurring at wide open throttle were tested. Cycle-resolved digital imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to the firing of fuel deposition near the intake valves and on the piston surface were investigated. Natural emission spectroscopy in a wide wavelength range from ultraviolet to infrared was applied to detect the radical species that marked the combustion phenomena in the selected operating conditions.
Journal Article

Use of Accelerometers for Spark Advance Control of SI Engines

2009-04-20
2009-01-1019
Electronic engine controls based on non-intrusive diagnostics can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The aim of this paper is the use of a low-cost linear capacitive accelerometer placed on the engine block for non-intrusive diagnosis of combustion process in spark ignition engines. In particular, good correspondences between the engine block vibrations and the combustion pressure signal were obtained. The angular position of pressure peak evaluated by accelerometer data can be used in a closed-loop control system for real time control of spark advance.
Technical Paper

Flame Diagnostics in the Combustion Chamber of Boosted PFI SI Engine

2007-09-16
2007-24-0003
The growing demands on fuel economy and always stricter limitations on pollutant emissions has increased the interest in the ignition phenomena to guarantee successful flame development for all the spark ignition (SI) engine operating conditions. The initial size and the growth of the flame have a strong influence on the further development of the combustion process. In particular, for the new FIAT generation of turbocharged SI engines, the first times of spark ignition combustion are not yet fully understood. This is mainly due to the missing knowledge concerning the detailed physical and chemical processes taking place during the all set of the flame propagation. These processes often occur simultaneously, making difficult the interpretation of measurements. In the present paper, flame dynamic was followed by UV-visible emission imaging in an optical SI engine.
Technical Paper

Development and Experimental Validation of a Combustion Model with Detailed Chemistry for Knock Predictions

2007-04-16
2007-01-0938
Aim of this work is to develop a general purpose model for combustion and knocking prediction in SI engines, by coupling a thermo-fluid dynamic model for engine simulation with a general detailed kinetic scheme, including the low-temperature oxidation mechanism, for the prediction of the auto-ignition behavior of hydrocarbons. A quasi-D approach is used to describe the in-cylinder thermodynamic processes, applying the conservation of mass and energy over the cylinder volume, modeled as a single open system. The complex chemistry model has been embedded into the code, by using the same integration algorithm for the conservation equations and the reacting species, and taking into account their mutual interaction in the energy balance. A flame area evolution predictive approach is used to evaluate the turbulent flame front propagation as function of the engine operating parameters.
Technical Paper

Use of Engine Crankshaft Speed for Determination of Cylinder Pressure Parameters

2009-09-13
2009-24-0108
The present study proposes the use of a MLP neural network to model the relationship between the engine crankshaft speed and parameters derived from the in-cylinder pressure cycle. This allows to have an indirect measure of cylinder pressure permitting a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. The application of the model is demonstrated on a single-cylinder engine with data from a wide range of speed and load. Results confirm that a good estimation of combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.
Technical Paper

Cycle Resolved Measurements of Diesel Particulate by Optical Techniques

1994-10-01
941948
The capabilities of the spectral extinction and scattering technique to follow the time history of the particulate concentration in the exhaust of a Diesel engine were evaluated. Simultaneous measurements of extinction and scattering coefficients from UV to visible were performed at 1.5 m downstream the exhaust valve. The measurements were triggered with the exhaust valve lift. The exhaust stroke was divided in three time windows of 1 ms in which the optical signals of 100 consecutive cycles were detected. The mean diameter, the concentration and the properties of soot particles were evaluated. The cyclic variation of measurements was also estimated.
Technical Paper

Diesel Exhaust Nanoparticles Characterization by Multiwavelength Techniques, Laser Induced Incandescence and ELPI

2005-09-11
2005-24-021
Two different optical techniques for detection, sizing and counting nanoparticles were applied to undiluted exhaust from 16 v–1900 cc Common Rail diesel engine upstream and downstream a Catalyzed Diesel Particulate Filter (CDPF): Broadband Ultraviolet–Visible Extinction and Scattering Spectroscopy (BUVESS) and Laser Induced Incandescence (LII). They are powerful “in situ” and non-intrusive techniques; they are able to measure mass concentration and size of particles, considering their chemical properties. BUVESS overcomes the intrinsic limitations of single wavelength techniques because it takes advantage of data at several wavelengths to retrieve primary particle size distribution. LII measures mean size of primary particles with a large dynamic range, not limited by aggregate size and by complex retrieving procedure.
Technical Paper

A Study of Physical and Chemical Delay in a High Swirl Diesel System via Multiwavelength Extinction Measurements

1998-02-23
980502
The characterization of a turbulent diesel spray combustion process has been carried out in a divided chamber diesel system with optical accesses. Laser Doppler Anemometry, spectral extinction and flame intensity measurements have been performed from U.V., to visible from the start of injection to the end of combustion, at fixed air/fuel ratio and different engine speeds. Spatial distribution of fuel and vapor as well as the ignition location and soot distribution have been derived in order to study the mechanism of the air-fuel interaction and the combustion process. The analysis of results has shown that the high swirling motion transports the fuel towards the left part of the chamber and breaks up the jet into small droplets of different sizes and accelerates the fuel vaporization. Then, chemical and physical overlapped phases were observed during the ignition delay, contributing both to autoignition.
X