Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Use of Accelerometers for Spark Advance Control of SI Engines

2009-04-20
2009-01-1019
Electronic engine controls based on non-intrusive diagnostics can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The aim of this paper is the use of a low-cost linear capacitive accelerometer placed on the engine block for non-intrusive diagnosis of combustion process in spark ignition engines. In particular, good correspondences between the engine block vibrations and the combustion pressure signal were obtained. The angular position of pressure peak evaluated by accelerometer data can be used in a closed-loop control system for real time control of spark advance.
Technical Paper

Optical Characterization of the Combustion Process in a 4- Stroke Engine for 2-Wheel Vehicle.

2009-09-13
2009-24-0055
The match among the increasing performance demands and the stringent requirements of emissions and the fuel consumption reduction needs a strong evolution in the two-wheel vehicle technology. In particular, many steps forward should be taken for the optimization of modern small motorcycles and scooters at low engine speeds and high loads. To this aim, detailed understanding of thermo-fluid dynamic phenomena that occur in the combustion chamber is fundamental. In this work, low-cost solutions are proposed to optimize ported fuel injection spark ignition (PFI SI) engines for two-wheel vehicles. The solutions are based on the change of phasing and on the splitting of the fuel injection in the intake manifold. The experimental activities were carried out in the combustion chamber of a single-cylinder 4-stroke optical engine fuelled with European commercial gasoline. The engine was equipped with a four-valve head of a commercial scooter engine.
Technical Paper

Thermo-Fluid Dynamic Modeling and Experimental Investigation of a Turbocharged Common Rail DI Diesel Engine

2005-04-11
2005-01-0689
The paper describes the results of a parallel 1D thermo-fluid dynamic simulation and experimental investigation of a DI turbocharged Diesel engine. The attention has been focused on the overall engine performances (air flow, torque, power, fuel consumption) as well as on the emissions (NO and particulate) along the after-treatment system, which presents a particulate filter. The 1D research code GASDYN for the simulation of the whole engine system has been enhanced by the introduction of a multi-zone quasi-dimensional combustion model for direct injection Diesel engines. The effect of multiple injections is taken into account (pilot and main injection). The prediction of NO and soot has been carried out respectively by means of a super-extended Zeldovich mechanism and by the Hiroyasu kinetic approach.
X