Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Control of Passenger Vehicle Internal Aerodynamics Through Forced Air Extraction

2002-03-04
2002-01-0234
The increasing competitiveness in the automobile market has resulted in the incorporation by the manufacturers of certain features in newer cars that are deemed highly desirable by the customer. Among such features that require improvement is the thermal comfort of passengers' within the cabin. Thermal comfort is in increasing demand from motorists bound to cover more mileage driving cars than ever before. As a result, car makers are striving for improved climate conditions inside the car to meet passenger demand for more comfortable trips. The need to improve the climatic comfort within the vehicle is critical not only to passengers' comfort but also to their safety. However, to make progress in this area, a good understanding of the airflow behaviour within the vehicle interior is required. This paper, reports on a novel idea of control the air movement within the cabin by forcibly removing the air from strategically positioned vents.
Technical Paper

Assessing the Performance of Electrically Heated Windshield

2002-03-04
2002-01-0225
The safety and comfort aspects of passenger vehicles are significant sales argument and have become a topic of rising importance during the development process of a new vehicle. The objective of this study is to compare the performance of several current model vehicles, highlight the drawbacks of current defrosting/demisting systems and point the way to improved passive mechanisms. The investigation is experimental. The work presented is an experimental and numeric investigation of the clear-up pattern of a current vehicle fitted with an electrically heated windshield. Nottingham FDL climatic wind tunnel is used to perform the experimental tests. The clear up pattern developed utilising the vehicle defroster system is digitally captured and compared to the clear up pattern developed utilising the electrical heated windshield. Moreover, the clear up pattern developed using the vehicle defroster system is used to validate a computational model.
Technical Paper

Full- and Model-Scale Scrutiny of the Effects of Vehicle Windshield Defrosting and Demisting on Passenger Comfort and Safety

2003-03-03
2003-01-1082
Maintaining adequate visibility at all times, through a vehicle windshield, is critical to the safe usage of the vehicle. The ability of the windshield defrosting and demisting system to quickly and completely melt ice on the outer windshield surface and remove mist formed on the inner surface is therefore of paramount importance. The objectives of this paper are to investigate the fluid flow and heat transfer on the windshield as well the effect of the air discharge from the defroster vents on passenger comfort. The results presented are from numerical simulations validated by experimental measurements both carried out a model and full-scale. The numerical predictions compare well with the experimental measurements at both scales. The effects of the defrosting and demisting air on occupants' comfort and safety are examined.
X