Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Improving Centrifugal Pump Performance under Low Flow Rates by Adding Designed Cylindrical Disks at the Impeller Inlet

2020-04-14
2020-01-1165
Enhancing the performance of centrifugal pumps requires a thorough understanding of the internal flow. Flow simulation inside the pump can help understand the rotatory motion induced by the impellers, as well as the flow instabilities. The flow inside a centrifugal pump is three dimensional, disturbed and accompanied by tributary flow structures. When a centrifugal pump operates under low flow rates, a secondary flow known as recirculation starts to begin. The separation of flow occurs which creates vortices and decreases local pressure which induces cavitation. This phenomenon of recirculation will rise the Net Positive Suction Head Required (NPSHR). This work aims to improve the pump efficiency under low flow rates by adding multiple cylindrical disks at the pump inlet section to suppress the flow recirculation. In this study, a numerical simulation is carried out to investigate the influence on the pump internal flow by adding multi cylindrical disks.
Journal Article

Numerical Study of the Aerodynamic Characteristics of a Multi-Element Airfoil NACA 23012

2013-04-08
2013-01-1410
This work aims to numerically investigate the aerodynamic characteristics of a multi-element airfoil NACA 23012. The investigation was conducted through Computational Fluid Dynamics (CFD), using ANSYS FLUENT software. The Navier-Stokes equations were solved for turbulent, incompressible flow using k-epsilon model and SIMPLE algorithm. The study was carried out for both take-off / landing conditions and the results were compared to experimental data of the NACA 23012 from wind tunnel tests. The experimental and computational results for drag and lift coefficients match effectively up to pre-stall attack angles. The pressure coefficients, velocity distribution, and wall Y+ data were presented for different angles of attack (0 deg, 4 deg, and 8 deg). The CFD analysis could help acquire a closer and detailed understanding of airfoil performance, which is usually not easy through normal experimentation.
Technical Paper

Effects of Inlet Curved Spacer Arrancement on Centrifugal Pump Impellers

2017-03-28
2017-01-1607
This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
X