Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Comprehensive Numerical Approach to Predict Thermal Runaway in Li-Ion Battery Packs

2021-04-06
2021-01-0748
With the increasing level of electrification of on-road, off-road and stationary applications, use of larger lithium-ion battery packs has become essential. These packs require large capital investments on the order of millions of dollars and pose a significant risk of self-annihilation without rigorous safety evaluation and management. Testing these larger battery packs to validate design changes can be cost prohibitive. A reliable numerical simulation tool to predict battery thermal runaway under various abuse scenarios is essential to engineer safety into the battery pack design stage. A comprehensive testing & simulation workflow has been established to calibrate and validate the numerical modeling approach with the test data for each of the individual sub model - electrochemical, internal short circuit and thermal abuse model. A four-equation thermal abuse model was built and validated for lithium-ion 21700 form factor cylindrical cells using NCA cathodes.
Technical Paper

Modeling and Predicting Mechanically Induced Internal Short Circuits in Lithium Ion Battery Packs

2021-04-06
2021-01-0750
As advances in electrification continue within the vehicle industry, improving the front-end design process and managing the safety aspects of lithium-ion batteries is increasingly important. Structural damage to lithium-ion batteries can cause internal short circuit, leading to a large energy release that can lead to fire and thermal runaway that propagates throughout the battery pack. Southwest Research Institute has developed a mechanical model that can accurately predict mechanically-induced damage to lithium-ion battery cells and battery packs. This model also predicts whether the external damage will cause an internal short-circuit. This modeling process was illustrated using 21700 cylindrical cells with NCA cathode chemistry. High-speed impact tests were used to calibrate a single cell model, which was then scaled to a 12-cell battery module. This model was then used to accurately predict the outcome of an impact test on a 72-cell battery module.
Journal Article

A One-Way Coupled Modeling Method to Simulate Battery Pack Thermal Runaway Initiated by an External Impact

2023-04-11
2023-01-0593
There is an ongoing proliferation of electric and electrified vehicles as manufacturers seek to reduce their carbon footprint and meet the carbon reduction targets mandated by governments around the world. An ongoing challenge in electric vehicle design is the efficient and safe design of battery packs. There are significant safety challenges for lithium battery packs relating to thermal runaway, which can be initiated through overheating and internal short from defects or external damage. This work proposes a robust method to couple the mechanical damage in a battery module calculated from a dynamic model with a thermal model of the battery that includes heating from electro-chemical sources as well as Arrhenius reactions from the battery cells. The authors identify the main sources of thermal runaway initiation and propagation in an impact scenario simulating a vehicle collision. The modeling approach was developed and validated using test data.
X