Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-09-13
2011-01-2274
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
Technical Paper

Vehicle HIL, The Near Term Solution for Optimizing Engine and Transmission Development

2005-01-11
2005-01-1050
Current engine and transmission development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance and the transmission's efficiency and performance based on several controllable inputs such as throttle, spark advance, EGR, and shift scheduling. Steady-state and or simple transient testing these idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine and/or transmission under transient operation has become critically important. During transient operation of the engine, the transient torque requirements on the engine are highly dependent on transmission and vehicle parameters such as torque converter, gear ratios, downstream rotational inertias, and vehicle mass. Similarly, in-vehicle transmission loading is dependent on engine and vehicle operation.
Technical Paper

An Engine Start/Stop System for Improved Fuel Economy

2007-04-16
2007-01-1777
During city traffic or heavily congested roads, a vehicle can consume a substantial amount of fuel idling when the vehicle is stopped. Due to regulation enforcement, auto manufacturers are developing systems to increase the mileage and reduce emissions. Turning off the engine at traffic lights and regenerative braking systems are simple ways to reduce emissions and fuel consumption. In order to develop strong manufacturer and consumer interest, this type of operation needs to be automated such that the stop/start functionality requires no driver interaction and takes place without the intervention of the vehicle operator. Valeo Electrical Systems has developed such a system that replaces the OEM engine alternator with a starter/alternator driven by a standard multi-ribbed V belt. To avoid a break and dual voltage network, this system is based on a 12V electrical system using an Enhanced Power Supply.
X