Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise

2009-05-19
2009-01-2203
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
Technical Paper

Reducing a Sports Activity Vehicle's Aeroacoustic Noise using a Validated CAA Process

2012-06-13
2012-01-1552
Developing a low interior noise level of vehicles is a big challenge - even a greater one if one thinks about aeroacoustics. Aeroacoustic noise and its origins are usually identified with the help of prototypes when exterior design changes or the replacement of exterior parts like side mirrors are very limited. However, computational aeroacoustic (CAA) methods in virtual project phases offer more design options for the vehicle's geometric shape. The early consideration of aeroacoustic relevant design changes helps to keep project costs low by avoiding tool changes. This paper describes MAGNA STEYR's virtual aeroacoustic process starting from standardized model generation and simulation of wind noise, including the validation of computational results via comparison with measurement data gathered in an acoustic wind tunnel. The simulations are carried out using the commercial CAA code “PowerFLOW” (Exa) based on the Lattice-Boltzmann method.
X