Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Membrane-Based Bioprocessor for Life Support Wastewater Reclamation

1998-07-13
981611
Although bioprocessors have been successfully tested in ground test experiments as primary wastewater processors [1, 2 and 3], the transition required for operation of a bioprocessor in microgravity is complicated by the absence of gravity and buoyancy-driven convection. Gases are present in the wastewater bioprocessor from numerous sources including aeration, metabolic production and operation. This paper presents an innovative approach to the delivery of metabolically-required oxygen to a bioprocessor. A bioprocessor that provides oxygen delivery and bacterial support using membranes has been developed and tested during the past two years. Bench-top laboratory results have demonstrated that Total Organic Carbon (TOC) degradation above 95%, and nitrification above 80% can be maintained, while denitrification typically ranged between 5-25% in a membrane bioprocessor system (MBS).
Technical Paper

Integrated Water Recovery System Test

2003-07-07
2003-01-2577
The work presented in this paper summarizes the performance of subsystems used during an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The overall objective of this test was to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem was designed for operation in microgravity. The primary treatment system consisted of a biological system for organic carbon and ammonia removal. Dissolved solids were removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis was used for polishing of the effluent water stream. The wastewater stream consisted of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Early Results of an Integrated Water Recovery System Test

2001-07-09
2001-01-2210
The work presented in this paper summarizes the early results of an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The system design and the results of the first two months of operation are presented. The overall objective of this test is to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem is designed for operation in microgravity. The primary treatment system consists of a biological system for organic carbon and ammonia removal. Dissolved solids are removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis is used for polishing of the effluent water stream. The wastewater stream consists of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Application of Capillary Fluid Management Techniques to the Design of a Phase Separating Microgravity Bioreactor

1993-07-01
932165
Manned space missions require the development of compact, efficient, and reliable life support systems. A number of aqueous biological conversion processes are associated with bioregenerative life support systems. Vessels, or bioreactors, capable of supporting these processes in microgravity must be developed. An annular flow bioreactor has been conceived. It has the potential to incorporate containment, phase separation, gas exchange, and illumination into a single vessel. The bioreactor utilizes capillary fluid management techniques and is configured as a cylindrical tube in which a two-phase liquid-gas flow is maintained. Vanes placed around the inner perimeter enhance capillary forces and cause the liquid phase to attach and flow along the interior surface of the tube. No physical barrier is required to complete phase separation.
Technical Paper

Biological Wastewater Processor Experiment Definition

2000-07-10
2000-01-2468
The Biological Wastewater Processor Experiment Definition team is performing the preparatory ground research required to define and design a mature space flight experiment. One of the major outcomes from this work will be a unit-gravity prototype design of the infrastructure required to support scientific investigations related to microgravity wastewater bioprocessing. It is envisioned that this infrastructure will accommodate the testing of multiple bioprocessor design concepts in parallel as supplied by NASA, small business innovative research (SBIR), academia, and industry. In addition, a systematic design process to identify how and what to include in the space flight experiment was used.
Technical Paper

Development and Testing of Membrane Biological Wastewater Processors

1999-07-12
1999-01-1947
Ground-based laboratory and closed-chamber human tests have demonstrated the ability of microbial-based biological processors to effectively remove carbon and nitrogen species from regenerable life support wastewater streams. Application of this technology to crewed spacecraft requires the development of gravity-independent bioprocessors due to a lack of buoyancy-driven convection and sedimentation in microgravity. This paper reports on the development and testing of membranebased biological reactors and addresses the processing of planetary and International Space Station (ISS) waste streams. The membranes provide phase separation between the wastewater and metabolically required oxygen, accommodate diffusion-driven oxygen transport, and provide surface area for microbial biofilm attachment. Testing of prototype membrane bioprocessors has been completed.
X