Refine Your Search

Topic

Search Results

Journal Article

How Hythane with 25% Hydrogen can Affect the Combustion in a 6-Cylinder Natural-gas Engine

2010-05-05
2010-01-1466
Using alternative fuels like Natural Gas (NG) has shown good potentials on heavy duty engines. Heavy duty NG engines can be operated either lean or stoichiometric diluted with EGR. Extending Dilution limit has been identified as a beneficial strategy for increasing efficiency and decreasing emissions. However dilution limit is limited in these types of engines because of the lower burnings rate of NG. One way to extend the dilution limit of a NG engine is to run the engine on Hythane (natural gas + some percentage hydrogen). Previously effects of Hythane with 10% hydrogen by volume in a stoichiometric heavy duty NG engine were studied and no significant changes in terms of efficiency and emissions were observed. This paper presents results from measurements made on a heavy duty 6-cylinder NG engine. The engine is operated with NG and Hythane with 25% hydrogen by volume and the effects of these fuels on the engine performance are studied.
Journal Article

Study of the Early Flame Development in a Spark-Ignited Lean Burn Four-Stroke Large Bore Gas Engine by Fuel Tracer PLIF

2014-04-01
2014-01-1330
In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.
Journal Article

Closed-Loop Combustion Control for a 6-Cylinder Port-Injected Natural-gas Engine

2008-06-23
2008-01-1722
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio for a heavy duty 6-cylinder port injected natural gas engine. A closed loop load control is also applied for keeping the load at a constant level when using EGR.
Journal Article

SI Gas Engine: Evaluation of Engine Performance, Efficiency and Emissions Comparing Producer Gas and Natural Gas

2011-04-12
2011-01-0916
The Technical University of Denmark, DTU, has designed, built and tested a gasifier [1, 8] that is fuelled with wood chips and achieves a 93% conversion efficiency from wood to producer gas. By combining the gasifier with an ICE and an electric generator a co-generative system can be realized that produces electricity and heat. The gasifier uses the waste heat from the engine for drying and pyrolysis of the wood chips while the gas produced is used to fuel the engine. To achieve high efficiency in converting biomass to electricity an engine is needed that is adapted to high efficiency operation using the specific producer gas from the DTU gasifier. So far the majority of gas engines have been designed and optimized for operation on natural gas. The presented work uses a modern and highly efficient truck sized natural gas engine to investigate efficiency, emissions and general performance while operating on producer gas compared to natural gas operation.
Journal Article

Investigation of Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine Operated with Pre-Chamber Spark Plug and Dilution with Excess Air and EGR

2012-09-24
2012-01-1980
This article deals with application of turbulent jet ignition technique to heavy duty multi-cylinder natural gas engine for mobile application. Pre-chamber spark plugs are identified as a promising means of achieving turbulent jet ignition as they require minimal engine modification with respect to component packaging in cylinder head and the ignition system. Detailed experiments were performed with a 6 cylinder 9.4 liter turbo-charged engine equipped with multi-point gas injection system to compare performance and emissions characteristics of operation with pre-chamber and conventional spark plug. The results indicate that ignition capability is significantly enhanced as flame development angle and combustion duration are reduced by upto 30 % compared to those with conventional spark plugs at certain operating points.
Technical Paper

Operation strategy of a Dual Fuel HCCI Engine with VGT

2007-07-23
2007-01-1855
HCCI combustion is well known and much results regarding its special properties have been published. Publications comparing the performance of different HCCI engines and comparing HCCI engines to conventional engines have indicated special features of HCCI engines regarding, among other things, emissions, efficiency and special feedback-control requirements. This paper attempts to contribute to the common knowledge of HCCI engines by describing an operational strategy suitable for a dual-fuel port-injected Heavy Duty HCCI engine equipped with a variable geometry turbo charger. Due to the special properties of HCCI combustion a specific operational strategy has to be adopted for the engine operation parameters (in this case combustion phasing and boost pressure). The low exhaust temperature of HCCI engines limits the benefits of turbo charging and causes pumping losses which means that “the more the merrier” principle does not apply to intake pressure for HCCI engines.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition

1998-02-23
980787
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the reciprocating engine. Here, a homogeneous charge is used as in a spark ignited engine, but the charge is compressed to auto-ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine, HCCI has a homogeneous charge and hence no problems associated with soot and NOX formation. Earlier research on HCCI showed high efficiency and very low amounts of NOX, but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP values with HCCI, the limit being 5 bar. Supercharging is one way to dramatically increase IMEP. The influence of supercharging on HCCI was therefore experimentally investigated. Three different fuels were used during the experiments: iso-octane, ethanol and natural gas.
Technical Paper

Lean Burn Versus Stoichiometric Operation with EGR and 3-Way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas

2007-01-23
2007-01-0015
Engine tests have been performed on a 9.6 liter spark-ignited engine fueled by natural gas and a mixture of 25/75 hydrogen/natural gas by volume. The scope of the work was to test two strategies for low emissions of harmful gases; lean burn operation and stoichiometric operation with EGR and a three-way catalyst. Most gas engines today, used in city buses, utilize the lean burn approach to achieve low NOx formation and high thermal efficiency. However, the lean burn approach may not be sufficient for future emissions legislation. One way to improve the lean burn strategy is to add hydrogen to the fuel to increase the lean limit and thus reduce the NOx formation without increasing the emissions of HC. Even so, the best commercially available technology for low emissions of NOx, HC and CO today is stoichiometric operation with a three-way catalyst as used in passenger cars.
Technical Paper

Influence of Mixture Quality on Homogeneous Charge Compression Ignition

1998-10-19
982454
The major advantages with Homogeneous Charge Compression Ignition, HCCI, is high efficiency in combination with low NOx-emissions. The major drawback with HCCI is the problem to control the ignition timing over a wide load and speed range. Other drawbacks are the limitation in attainable IMEP and relativly high emissions of unburned hydrocarbons. But the use of Exhaust Gas Recycling (EGR) instead of only air, slows down the rate of combustion and makes it possible to use lower air/fuel ratio, which increases the attainable upper load limit. The influence of mixture quality was therefore experimentally investigated. The effects of different EGR rates, air/fuel ratios and inlet mixture temperatures were studied. The compression ratio was set to 18:1. The fuels used were iso-octane, ethanol and commercially available natural gas. The engine was operated naturally aspirated mode for all tests.
Technical Paper

Closed-Loop Combustion Control Using Ion-current Signals in a 6-Cylinder Port-Injected Natural-gas Engine

2008-10-06
2008-01-2453
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio. Furthermore, ion-current based dilution limit control is applied on the EGR in order to maximize EGR rate as long as combustion stability is preserved.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

2002-03-04
2002-01-0111
This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

Simulation of HCCI – Addressing Compression Ratio and Turbo Charging

2002-10-21
2002-01-2862
This paper focuses on the performance and efficiency of an HCCI (Homogenous Charge Compression Ignition) engine system running on natural gas or landfill gas for stationary applications. Zero dimensional modeling and simulation of the engine, turbo, inlet and exhaust manifolds and inlet air conditioner (intercooler/heater) are used to study the effect of compression ratio and exhaust turbine size on maximum mean effective pressure and efficiency. The extended Zeldovich mechanism is used to estimate NO-formation in order to determine operation limits. Detailed chemical kinetics is used to predict ignition timing. Simulation of the in-cylinder process gives a minimum λ-value of 2.4 for natural gas, regardless of compression ratio. This is restricted by the NO formation for richer mixtures. Lower compression ratios allow higher inlet pressure and hence higher load, but it also reduces indicated efficiency.
Technical Paper

The Potential of Using the Ion-Current Signal for Optimizing Engine Stability - Comparisons of Lean and EGR (Stoichiometric) Operation

2003-03-03
2003-01-0717
Ion current measurements can give information useful for controlling the combustion stability in a multi-cylinder engine. Operation near the dilution limit (air or EGR) can be achieved and it can be optimized individually for the cylinders, resulting in a system with better engine stability for highly diluted mixtures. This method will also compensate for engine wear, e.g. changes in volumetric efficiency and fuel injector characteristics. Especially in a port injected engine, changes in fuel injector characteristics can lead to increased emissions and deteriorated engine performance when operating with a closed-loop lambda control system. One problem using the ion-current signal to control engine stability near the lean limit is the weak signal resulting in low signal to noise ratio. Measurements presented in this paper were made on a turbocharged 9.6 liter six cylinder natural gas engine with port injection.
Technical Paper

Scalability Aspects of Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2016-04-05
2016-01-0796
This article presents a study related to application of pre-chamber ignition system in heavy duty natural gas engine which, as previously shown by the authors, can extend the limit of fuel-lean combustion and hence improve fuel efficiency and reduce emissions. A previous study about the effect of pre-chamber volume and nozzle diameter on a single cylinder 2 liter truck-size engine resulted in recommendations for optimal pre-chamber geometry settings. The current study is to determine the dependency of those settings on the engine size. For this study, experiments are performed on a single cylinder 9 liter large bore marine engine with similar pre-chamber geometry and a test matrix of similar and scaled pre-chamber volume and nozzle diameter settings. The effect of these variations on main chamber ignition and the following combustion is studied to understand the scalability aspects of pre-chamber ignition. Indicated efficiency and engine-out emission data is also presented.
Technical Paper

HCCI Gas Engine: Evaluation of Engine Performance, Efficiency and Emissions - Comparing Producer Gas and Natural Gas

2011-04-12
2011-01-1196
The Technical University of Denmark, DTU, has constructed, built and tested a gasifier [1, 11] that is fueled with wood chips and achieves a 93% conversion efficiency from wood to producer gas. By combining the gasifier with an internal combustion engine and a generator, a co-generative system can be realized that produces electricity and heat. The gasifier uses the waste heat from the engine for drying and pyrolysis of the wood chips while the produced gas is used to fuel the engine. To achieve high efficiency in converting biomass to electricity it necessitates an engine that is adapted to high efficiency operation using the specific producer gas from the DTU gasifier. So far the majority of gas engines of today are designed and optimized for SI-operation on natural gas.
Technical Paper

Reducing Throttle Losses Using Variable Geometry Turbine (VGT) in a Heavy-Duty Spark-Ignited Natural Gas Engine

2011-08-30
2011-01-2022
Stoichiometric operation of Spark Ignited (SI) Heavy Duty Natural Gas (HDNG) engines with a three way catalyst results in very low emissions however they suffer from bad gas-exchange efficiency due to use of throttle which results in high throttling losses. Variable Geometry Turbine (VGT) is a good practice to reduce throttling losses in a certain operating region of the engine. VTG technology is extensively used in diesel engines; it is very much ignored in gasoline engines however it is possible and advantageous to be used on HDNG engine due to their relatively low exhaust gas temperature. Exhaust gas temperatures in HDNG engines are low enough (lower than 760 degree Celsius) and tolerable for VGT material. Traditionally HDNG are equipped with a turbocharger with waste-gate but it is easy and simple to replace the by-pass turbocharger with a well-matched VGT.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas - A Comparison with Spark Ignition Operation

1997-10-01
972874
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the Internal Combustion (IC) engines. Here, a homogeneous charge is used as in a spark ignited engine but the charge is compressed to auto-ignition as in a diesel. The characteristics of HCCI were compared to SI using a 1.6 liter single cylinder engine with compression ratio 21:1 in HCCI mode and 12:1 in SI mode. Three different fuels were used; isooctane, ethanol and natural gas. Some remarkable results were noted in the experiments: The indicated efficiency of HCCI was much better than for SI operation. Very little NOx was generated with HCCI, eliminating the need for a LeanNOx catalyst. However, HCCI generated more HC and CO than SI operation. Stable and efficient operation with HCCI could be obtained with λ=3 to λ=9 using isooctane or ethanol. Natural gas, with a higher octane number, required a richer mixture to run in HCCI mode.
Technical Paper

Reducing the Cycle-Cycle Variability of a Natural Gas Engine Using Controlled Ignition Current

2013-04-08
2013-01-0862
Running an internal combustion engine with diluted methane/air mixtures has a potential of reducing emissions and increasing efficiency. However, diluted mixtures need high ignition energy in a sufficiently large volume, which is difficult to accomplish. Increasing the spark duration has shown to be a promising way of delivering more energy into the diluted charge, but this requires a more sophisticated ignition system. This work focuses on evaluating the effects regarding enhancing early flame development, reducing cyclic variations and extending the lean limit using a new capacitive ignition system as compared to a conventional inductive ignition system. The new system offers the opportunity to customise the spark by altering the electric pulse train characteristics choosing the number of pulses, the length of the individual pulses as well as the time delay between them.
X