Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Advanced CAE Methods for NVH Development of High-Speed Electric Axle

2020-09-30
2020-01-1501
The rate in the electrification of vehicles has risen in recent years. With intensified development more and more attention is paid to the noise and vibration in such vehicles especially from the EDU (Electric Drive Unit). In this paper the main NVH simulation process of a high-speed E-axle up to 30,000 rpm for premium class vehicle application is presented. The high speed, high-power density and lightweight design introduces new challenges. Benchmarking of different EDUs and vehicles leads to targets which can be used at the early stage of development as subsystem targets. This paper shows the CAE methodology which can be used to verify the design and guarantee the target achievement. Using CAE both source and structure can be optimized to improve the NVH behavior.
Technical Paper

NVH Aspects of Electric Drives-Integration of Electric Machine, Gearbox and Inverter

2018-06-13
2018-01-1556
The rate in the electrification of vehicles has risen in recent years and, despite that electric vehicles are quiet, NVH remains a major requirement of vehicle development. The typical NVH issues are gear whine from the gearbox, noise from the E-machine or electromagnetic whine, as well as the noise from the inverter, and noise from inverter harmonics effect on E-machine. Simulation methodologies and CAE workflows are being enhanced to contribute to electric drive systems development. Front loading in the concept and layout design phase are necessary to avoid significant NVH issues at the end of development. The authors previously presented a workflow for combining the electric and mechanical noise for electric drives for the concept and layout design phases. This paper shows an application of the formerly presented workflow for NVH simulation and validation of a system with an Interior Permanent Magnet (IPM) E-machine.
Technical Paper

A new Evaluation Approach for NVH Efficiency of E-Drive Encapsulations

2024-06-12
2024-01-2955
Encapsulations of E-drive systems are gaining importance in electric mobility, since they are simple measure to improve the noise behavior of the drive. Current experimental evaluation methods however pose substantial challenges for the test personnel and are associated with considerable effort in both time and cost. Evaluating the encapsulation on an e-drive test bed, for example, requires a functional e-drive and test bed resources. Evaluations in the vehicle on the other hand make objective assessments difficult and are subject to increasingly limited availability of prototype vehicles fit for NVH testing. To overcome these challenges, AVL has developed a new experimental evaluation method for the NVH efficiency of e-drive encapsulations. In this method, the e-drive is freely suspended in a semi-anechoic chamber and its structure is excited using shakers while the radiated noise with and without encapsulation is measured.
X