Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Simulation Research on Emission Control Technology of Low-Speed Two-Stroke Diesel Engine Based on EGR and Miller Cycle

2019-04-02
2019-01-0945
This paper investigates the influences of EGR and Miller cycle on NOx emission of a heavy-duty two-stroke diesel engine. The NOx emission is strictly restricted by the IMO Tier III Emission Regulations, resulting in an insufficient application of the single emission reduction technology to meet the emission requirements. It is asserted that EGR is the most effective manner to reduce NOx emission, but the fuel consumption increases simultaneously. In consideration of emission reduction with fuel economy, EGR and Miller cycle were combined and studied in this paper. Parameters like in-cylinder pressure, in-cylinder temperature, mass in the chamber, emission (NOx and soot) and fuel consumption rate were investigated based on a single-cylinder 3D model. The wet condition that happens in the engine application was considered in the model development process. The model was validated and compared with the experimental data.
Technical Paper

Scaled Model Experiments for Marine Low-Speed Diesel Engines

2019-12-19
2019-01-2182
Diesel engines have been widely used as marine propulsion, with a wide range of bore diameters. Since some similar characteristics of spray combustion exist in different size diesel engines, the ability to accurately reproduce engine performance by existing engines is therefore beneficial for reducing time, cost and energy consumption in new engine development. However, so far knowledge on scaling diesel engines is far from adequate, particularly for large marine low-speed diesel engines. The aim of this study is to explore the potential of scaled model experiments for marine low-speed diesel engines with different bore diameters.
Technical Paper

Research on a Closed-Loop Control Strategy of Boost Pressure in Diesel Engines with Regulated Two-Stage Turbocharging System

2015-09-01
2015-01-1986
The level of boost pressure has a significant effect on optimizing the steady-state and transient performance of turbocharged diesel engines. However the problem of matching the wide speed range diesel engine and the high pressure turbocharging system has to be resolved. The regulated two-stage (RTS) system is an effective method to improve the fuel economy, transient response and smoke emissions. Compared with the difficult matching problem of the RTS system, the problem of boost pressure control is more complex due to the frequently changing operating conditions. To overcome the limitations of an open-loop control strategy, a closed-loop boost pressure control strategy was studied numerically using a mean value model of a diesel engine with RTS system. The system identification was conducted for the transient response from the turbine bypass opening command to the boost pressure.
Technical Paper

The Effect of Bypass Valve Control on the Steady-State and Transient Performance of Diesel Engines with Regulated Two-Stage Turbocharging System

2015-09-01
2015-01-1987
The concept of regulated two-stage turbocharging system is proposed to provide high boost pressure level over a wide range of engine speed by regulating the energy distribution of two turbochargers. However, the control strategy of turbine bypass valve becomes more complicated due to the frequently changing working of vehicle diesel engines. In this paper, a two-stage turbocharging system was matched for D6114 diesel engine to improve the low-speed torque. The effect of valve opening on the steady-state and transient performance was analyzed, and two different regulating laws were determined according to the different optimum aims. Then the transient response characteristics of two different regulating laws were studied and optimized at three speeds with the transient loading test. For steady-state performance, the output power and fuel efficiency were increased with the matched turbocharging system.
X