Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance of a NOX Adsorber and Catalyzed Particle Filter System on a Light-Duty Diesel Vehicle

2001-05-07
2001-01-1933
A prototype emissions control system consisting of a close-coupled lightoff catalyst, catalyzed diesel particle filter (CDPF), and a NOX adsorber was evaluated on a Mercedes A170 CDI. This laboratory experiment aimed to determine whether the benefits of these technologies could be utilized simultaneously to allow a light-duty diesel vehicle to achieve levels called out by U.S. Tier 2 emissions legislation. This research was carried out by driving the A170 through the U.S. Federal Test Procedure (FTP), US06, and highway fuel economy test (HFET) dynamometer driving schedules. The vehicle was fueled with a 3-ppm ultra-low sulfur fuel. Regeneration of the NOX adsorber/CDPF system was accomplished by using a laboratory in-pipe synthesis gas injection system to simulate the capabilities of advanced engine controls to produce suitable exhaust conditions. The results show that these technologies can be combined to provide high pollutant reduction efficiencies in excess of 90% for NOX and PM.
Technical Paper

NOx Adsorber Performance In A Light-Duty Diesel Vehicle

2000-10-16
2000-01-2912
Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program (1, 2, 3 and 4)1. Ultra-low sulfur (3 ppm) diesel fuel was doped to 30 and 150 ppm sulfur so that all fuel properties except sulfur content would be the same. Although the Mercedes A170 vehicle is not certified for sale in the United States, its particulate matter (PM) and nitrogen oxide (NOx) emissions in the as-tested condition were within the Environmental Protection Agency's Tier 1 full useful life standards with its OEM oxidation catalysts installed. Engine-out tests showed that the OEM catalysts reduce PM by 30-40%.
Technical Paper

Catalyzed Diesel Particulate Filter Performance in A Light-Duty Vehicle

2000-10-16
2000-01-2848
Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the United States, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions.
X